• Title/Summary/Keyword: over-sized hole

Search Result 4, Processing Time 0.019 seconds

A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints (고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.513-521
    • /
    • 2006
  • Many studies have been conducted on the high tension bolt friction connection in the view of the field practice. Those effort, however, unfortunately have not been appropriately applied in the design specifications. Recently, particularly for steel bridges, rationalization of design takes greater attention from designers and hence, demand on rationalization of high tension connection becomes more significant. The purpose of this study is to suggest direction for the rationalization of high tension bolt connection and to also provide fundamental information for the improvement of the design specifications. In order to accomplish the purposes, the design specifications in Korea was analyzed and compared with other specification from abroad, and was studied one of the most important factors including slip coefficient, and the specifications on the size of bolt holes. The effect of over-sized bolt hole and the reduction of axial force on bolt was evaluated through the experimental studies on the slippage of the high tension bolt connections. Other research topics included herein includes the difference of slip coefficients, the effect of over-sized bolt holes and the gap distance of members, and the application of filler plate and corrosion protected bolts. From the research results, it is known that the specifications in Korea apply a constant slip coefficient with respect to the contacted surface conditions while various coefficients are available depending on the contacted surface conditions. Therefore, it is recommended that the specifications in Korea also develop and detail the slip coefficient which can appropriately take account of the variation of the contacted surface conditions. It is also suggested that the limitation abroad on the over-sized bolt hole may be applied for enhancing the effectiveness of construction.

Effects of the Nanometer-sized Bismuth Oxide Coating on Shadow Mask

  • Kim, Sang-Mun;Koh, Nam-Je
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.40-44
    • /
    • 2005
  • Nanometer-sized bismuth oxide with a diameter of about 80 nm was used as a new electron reflection material in a 29" Real Flat CPT. This bismuth oxide was well dispersed over pH8 in slurry. Spray coating was performed clearly and uniformly and was ensured that there was no clogging of shadow mask hole. Coating thickness was expressed to the brightness of chromaticity for the sprayed layer and was also well controlled during the spraying process. Doming was improved by about 10% in spite of the similar coating weight in comparison with the average 3.5 ${\mu}m$ of the conventional bismuth oxide.

Effect of Fabricating Nanopatterns on GaN-Based Light Emitting Diodes by a New Way of Nanosphere Lithography

  • Johra, Fatima Tuz;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Nanosphere lithography is an inexpensive, simple, high-throughput nanofabrication process. NSL can be done in different ways, such as drop coating, spin coating or by means of tilted evaporation. Nitride-based light-emitting diodes (LEDs) are applied in different places, such as liquid crystal displays and traffic signals. The characteristics of gallium nitride (GaN)-based LEDs can be enhanced by fabricating nanopatterns on the top surface of the LEDs. In this work, we created differently sized (420, 320 and 140 nm) nanopatterns on the upper surfaces of GaN-based LEDs using a modified nanosphere lithography technique. This technique is quite different from conventional NSL. The characterization of the patterned GaN-based LEDs revealed a dependence on the size of the holes in the pattern created on the LED surface. The depths of the patterns were 80 nm as confirmed by AFM. Both the photoluminescence and electroluminescence intensities of the patterned LEDs were found to increase with an increase in the size of holes in the pattern. The light output power of the 420-nm hole-patterned LED was 1.16 times higher than that of a conventional LED. Moreover, the current-voltage characteristics were improved with the fabrication of differently sized patterns over the LED surface using the proposed nanosphere lithography method.

Design of Ultrasonic Vibration Device using PZT Actuator for Precision Laser Machining (압전구동기를 이용한 정밀 가공용 초음파 진동장치 설계)

  • Kim, W.J.;Fei, L.;Cho, S.H.;Park, J.K.;Lee, M.G.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.8-12
    • /
    • 2011
  • As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in micro hole array on the surface of the stent, the problem can be solved. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver it to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20kHz and amplitude over 500nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT also is selected to have high actuating force and high speed of motion. The support has symmetrical and rigid characteristics.

  • PDF