• Title/Summary/Keyword: over load

Search Result 2,154, Processing Time 0.026 seconds

Implications of the effects of gravity load for earthquake resistant design of multistory building structurtes (고층건물의 내진설계에 미치는 중력하중의 영향)

  • 이동근;이석용
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.67-80
    • /
    • 1993
  • This paper presents the results of an analytical study to evaluate the inelastic seismic response characteristics of multistory building structures, the effects of gravity load on the seismic responses and its implications on the earthquake resistant design. Static analyses for incremental lateral force and nonlinear dynamic analyses for earthquake motions were performed to evaluate the seismic response of example multistory building structures. Most of considerations are placed on the distribution of inelastic responses over the height of the structure. When an earthquake occurs, bending moment demand is increased considerably from the top to the bottom of multistory structures, so that differences between bending moment demands and supplies are greater in lower floos of multistory structures. As a result, for building structures designed by the current earthquake resistant design procedure, inelastic deformations for earthquake ground motions do not distribute uniformly over the height of structures and those are induced mainly in bottom floors. In addition, gravity load considerded in design procedure tends to cause much larger damages in lower floors. From the point of view of seismic responses, gravity load affects the initial yield time of griders in earlier stage of strong earthquakes and results in different inelastic responses among the plastic hinges that form in the girders of a same floor. However, gravity load moments at beam ends are gradually reduced and finally fully relaxed after a structure experiences some inelastic excursions as a ground motion is getting stronger. Reduction of gravity load moment results in much increased structural damages in lower floors building structures. The implications of the effects of gravity load for seismic design of multistory building structures are to reduce the contributions of gravity load and to increased those of seismic load in determination of flexual strength for girders and columns.

  • PDF

An Analysis and Comparison on Efficiency of Load Distribution Algorithm in a Clustered System (클러스터 시스템의 부하분산 알고리즘의 효율성 비교분석)

  • Kim, Seok-Chan;Rhee, Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.2
    • /
    • pp.111-118
    • /
    • 2006
  • In this thesis, we analyze the efficiency of the algorithm to distribute the load in the clustered system, by comparing with the existed algorithm. PWLC algorithm detects each server's load in the system at weighted period, and following the detection of the loads, a set of weights is given to each server. The system allocates new loads to each server according to its weight. PWLC algorithm is compared with DWRR algorithm in terms of variance, waiting time by varying weighted Period. When the weighted period is too short, the system bears a heavy load for detecting load over time. On the other hand, when the weighted period is too long, the load balancing control of the system becomes ineffective. The analysis shows PWLC algorithm is more efficient than DWRR algorithm for the variance and waiting time.

Numerical study of concrete-encased CFST under preload followed by sustained service load

  • Li, Gen;Hou, Chao;Han, Lin-Hai;Shen, Luming
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.93-109
    • /
    • 2020
  • Developed from conventional concrete filled steel tubular (CFST) members, concrete-encased CFST has attracted growing attention in building and bridge practices. In actual construction, the inner CFST is erected prior to the casting of the outer reinforced concrete part to support the construction preload, after which the whole composite member is under sustained service load. The complex loading sequence leads to highly nonlinear material interaction and consequently complicated structural performance. This paper studies the full-range behaviour of concrete-encased CFST columns with initial preload on inner CFST followed by sustained service load over the whole composite section. Validated against the reported data obtained from specifically designed tests, a finite element analysis model is developed to investigate the detailed structural behaviour in terms of ultimate strength, load distribution, material interaction and strain development. Parametric analysis is then carried out to evaluate the impact of significant factors on the structural behaviour of the composite columns. Finally, a simplified design method for estimating the sectional capacity of concrete-encased CFST is proposed, with the combined influences of construction preload and sustained service load being taken into account. The feasibility of the developed method is validated against both the test data and the simulation results.

Point load actuation on plate structures based on triangular piezoelectric patches

  • Tondreau, Gilles;Raman, Sudharsana Raamanujan;Deraemaeker, Arnaud
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.547-565
    • /
    • 2014
  • This paper investigates the design of a perfect point load actuator based on flat triangular piezoelectric patches. Applying a difference of electric potential between the electrodes of a triangular patch leads to point loads at the tips and distributed moments along the edges of the electrodes. The previously derived analytical expressions of these forces show that they depend on two factors: the width over height (b/l) ratio of the triangle, and the ratio of the in-plane piezoelectric properties ($e_{31}/e_{32}$) of the active layer of the piezoelectric patch. In this paper, it is shown that by a proper choice of b/l and of the piezoelectric properties, the moments can be cancelled, so that if one side of the triangle is clamped, a perfect point load actuation can be achieved. This requires $e_{31}/e_{32}$ to be negative, which imposes the use of interdigitated electrodes instead of continuous ones. The design of two transducers with interdigitated electrodes for perfect point load actuation on a clamped plate is verified with finite element calculations. The first design is based on a full piezoelectric ceramic patch and shows superior actuation performance than the second design based on a piezocomposite patch with a volume fraction of fibres of 86%. The results show that both designs lead to perfect point load actuation while the use of an isotropic PZT patch with continuous electrodes gives significantly different results.

Load Variation Characteristics about Rope Length of Large Soft Body of Lightweight Wall Impact Resistance test (건식 경량벽체의 내충격성 시험용 연질 충격체의 줄 길이에 따른 하중변동 특성)

  • Kim, Ki Jun;Song, Jung Hyeon;An, Hong Jin;Shin, Yun Ho;Ji, Suk Won;Choi, Soo Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.182-183
    • /
    • 2014
  • In case of large soft body impact test at the construction site, the test conditions are different from conditions at the laboratory, and the length of rope to hold the impact specimen must be changed. In a previous study, the fact that the size of impact load is varied by the length of rope on the large soft body impact specimen was confirmed. In this study, the length of rope and fall height were set as independent variables to conduct the load analysis test. It was determined that the load fluctuation was occurred depending on the length of rope under the fall height over 100 mm, and it is concluded that the additional setup of fall height to modify the actual impact load size is required when the length of rope is below 2.5 m. In this study, the modified formula to put equal size of impact load regardless of the length of rope was extracted through the experiment.

  • PDF

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

Design of integral abutment bridges for combined thermal and seismic loads

  • Far, Narges Easazadeh;Maleki, Shervin;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.415-430
    • /
    • 2015
  • Integral abutment bridges have many advantages over bridges with expansion joints in terms of economy and maintenance costs. However, in the design of abutments of integral bridges temperature loads play a crucial role. In addition, seismic loads are readily transferred to the substructure and affect the design of these components significantly. Currently, the European and American bridge design codes consider these two load cases separately in their recommended design load combinations. In this paper, the importance and necessity of combining the thermal and seismic loads is investigated for integral bridges. A 2D finite element combined pile-soil-structure interactive model is used in this evaluation. Nonlinear behavior is assumed for near field soil behind the abutments. The soil around the piles is modeled by nonlinear springs based on p-y curves. The uniform temperature changes occurring at the time of some significant earthquakes around the world are gathered and applied simultaneously with the corresponding earthquake time history ground motions. By comparing the results of these analyses to prescribed AASHTO LRFD load combinations it is observed that pile forces and abutment stresses are affected by this new load combination. This effect is more severe for contraction mode which is caused by negative uniform temperature changes.

Research of aluminum nitride water load for the 4.6 GHz 500 kW LHCD system of the CFETR

  • Dingzhen Li;Liyuan Zhang;Lianmin Zhao;Fukun Liu;Min Cheng;Huaichuan Hu;Taian Zhou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3126-3132
    • /
    • 2023
  • To meet the increasing heating needs of the China Fusion Experimental Tokamak Reactor (CFETR), the output power in each Lower Hybrid Current Drive (LHCD) transmission line should be increased from 250 kW to 500 kW. Therefore, a new high-power water load must be developed for the 4.6 GHz 500 kW LHCD system. This paper aims to report the most recent research progress of the water load: aluminum nitride (AlN) ceramic is used as the media material to isolate the water and vacuum, and the radio frequency (RF) simulation results show that the return loss of the water load is less than -25dB at 4.6 GHz over a wide temperature range. Under 500 kW continuous wave (CW) operation, the maximum temperatures of the ceramic and water are separately 67 ℃ and 62 ℃, resulting in thermal deformation of the ceramic of approximately 0.003 mm. Moreover, the AlN water load was tested on the 4.6 GHz 250 kW high-power test bench and found to work well with low reflected power.

A Study on the Load Bearing Characteristics Depending on Pile Construction Methods and Pile Load Test Methods Based on Case Analyses (사례분석에 기초한 말뚝시공법 및 재하시험방법에 따른 하중지지특성에 관한 연구)

  • Hong, Seok-Woo;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.5-21
    • /
    • 2012
  • In our country, in the case of traditional design of pile foundations, only a design depending on end bearing has been performed. However, through the load transfer measurement data that have been carried out for in-situ piles, it was known that skin frictional force was mobilized greatly. In this study, through the analysis of the load transfer test cases of driven steel pipe piles and large-diameter drilled shafts, load bearing aspects of pile foundation depending on pile construction methods and pile load test methods were established. The average sharing ratios of skin frictional force were independent of pile types, pile load test methods, relative pile lengths, pile diameters and soil types. Because the average sharing ratios were over 50%, the case pile foundations mostly behaved as a friction pile and the extremely partial case pile foundation behaved as a combined load bearing pile.

Maximum-Efficiency Tracking Scheme for Piezoelectric-Transformer Inverter with Dimming Control

  • Nakashima Satoshi;Ogasawara Hiroshi;Kakehashi Hidenori;Ninomiya Tamotsu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.7-10
    • /
    • 2001
  • This paper provides a solution for the problem of efficiency decrease caused by load variation. A novel control scheme of tracking the PT's operation frequency for the maximum efficiency is proposed. As a result, a high efficiency over $80\%$ has been achieved even under the output-current decrease down to $10\%$ of the full load current.

  • PDF