• 제목/요약/키워드: ovarian cancer cells

검색결과 179건 처리시간 0.023초

Upregulation of long non-coding RNA XIST has anticancer effects on epithelial ovarian cancer cells through inverse downregulation of hsa-miR-214-3p

  • Wang, Changhong;Qi, Shan;Xie, Cheng;Li, Chunfu;Wang, Pu;Liu, Dongmei
    • Journal of Gynecologic Oncology
    • /
    • 제29권6호
    • /
    • pp.99.1-99.11
    • /
    • 2018
  • Objective: The present study is to evaluate the biological functions of long non-coding RNA (lncRNA), X-inactive specific transcript, X-inactive specific transcript (XIST) in human epithelial ovarian cancer (EOC). Methods: XIST was upregulated in EOC cell lines, CAOV3 and OVCAR3 cells by lentiviral transduction. The effects of XIST overexpression on cancer cell proliferation, invasion, chemosensitivity and in vivo tumor growth were investigated, respectively. Possible sponging interaction between XIST and human microRNA hsa-miR-214-3p was further evaluated. Furthermore, hsa-miR-214-3p was overexpressed in XIST-upregulated CAOV3 and OVCAR3 cells to evaluate its effect on XIST-mediated EOC regulation. Results: Lentivirus-mediated XIST upregulation had significant anticancer effects in CAOV3 and OVCAR3 cells by suppressing cancer cell proliferation, invasion, increasing cisplatin chemosensitivity and inhibiting in vivo tumor growth. Hsa-miR-214-3p was confirmed to directly bind XIST, and inversely downregulated in XIST-upregulated EOC cells. In EOC cells with XIST upregulation, secondary lentiviral transduction successfully upregulated hsa-miR-214-3p expression. Subsequently, hsa-miR-214-3p upregulation functionally reversed the anticancer effects of XIST-upregulation in EOC. Conclusion: Upregulation of lncRNA XIST may suppress EOC development, possibly through sponging effect to induce hsa-miR-214-3p downregulation

Recombinant Adenoviral Vector Containing Tumor-Specific L-Plastin Promoter Fused to Cytosine Deaminase Gene as a Transcription Unit: Generation and Functional Test

  • Chung, In-Jae;Deisseroth, Albert-B.
    • Archives of Pharmacal Research
    • /
    • 제27권6호
    • /
    • pp.633-639
    • /
    • 2004
  • The expression of therapeutic transgenes in recombinant adenoviral vectors is a major cause of toxicity in dividing cancer cells as well as non dividing normal cells. To solve the problem of toxicity to normal cells, we have reported on a recombinant adenoviral vector system (AdLP-) in which the expression of the transgene is directed by the tumor-specific L-plastin promoter (LP) (Chung et al., 1999). The object of this study was to generate a recombinant adenoviral vector system which would generate tumor cell specific expression of cytosine deaminase (CD) gene. We report the construction of a replication-incompetent adenoviral vector in which CD is driven by the L-plastin promoter (AdLPCD). Infection of 293 cells by AdLPCD generated the functional CD protein as measured by HPLC analysis for the conversion of 5-Fluorocy-tosine (5-FC) to 5-Fluorouracil (5-FU). HPLC analysis in conjunction with counting radioactivity for [6-$^3$H]-5FC and [6-$^3$H]-5FU demonstrated vector dose-dependent conversion of 5-FC to 5-FU in AdLPCD infected ovarian cancer cells. The results from present and previous studies(Peng et al., 2001; Akbulut et al., 2003) suggest that the use of the AdLPCD/5-FC system may be of value in the treatment of cancer including microscopic ovarian cancer in the peritoneal cavity.

Adenovirus-Mediated Antisense Telomerase with Cisplatin Increased the Susceptibility of Cisplatin Resistant Ovarian Cancer Cell Line

  • Kim, Dae-Shick;Song, Joon-Seok;Lee, Kyu-Wan;Kim, Mee-Hye;Kim, Kyung-Tai;Kim, Hysook;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.711-715
    • /
    • 2002
  • Telomerase adds telomeric repeats to chromosomal ends and is known to play an important role in carcinogenesis through cellular immortalization. Since telomerase is an essential pathogenomic factor in malignant tumors, inhibiting telomerase activity is thought to be possible to make telomerase positive tumors more sensitive to cisplatin treatment, which is effective in ovarian cancers, but clinical success Is limited by chemo-resistance. In the present study, cisplatin-sensitive ovarian cancer cell line A2780 and cisplatin-resistant A2780/cp70 cell line were infected with antisense telomerase adenovirus Ad-OA. It was found that the Ad-OA suppressed ovarian cancer cell growth and this effect was mainly due to the induction of caspase-dependent apoptosis. Next, we infected the cisplatin resistant ovarian cancer cell line A2780/ cp70 with Ad-OA and cisplatin concurrently. Interestingly, cisplatin treatment with Ad-Oh was more effective to cisplatin-induced cell death in A2780/cp70 cells compared to cisplatin or the vector group only. These data suggest that cisplatin treatment with Ad-OA may be a new chemo-sensitizer for cisplatin resistant ovarian cancer.

Cytotoxic Effects of Strawberry, Korean Raspberry, and Mulberry Extracts on Human Ovarian Cancer A2780 Cells

  • Lee, Dahae;Kang, Ki Sung;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Preventive Nutrition and Food Science
    • /
    • 제21권4호
    • /
    • pp.384-388
    • /
    • 2016
  • Reactive oxygen species are tumorigenic by their ability to increase cell proliferation, survival, and cellular migration. The purpose of the present study was to compare the antioxidant activity and cytotoxic effects of 3 berry extracts (strawberry, Korean raspberry, and mulberry) in A2780 human ovarian carcinoma cells. Except for raspberry, the ethyl acetate or methylene chloride fractions of berries containing phenolic compounds exerted dose dependent free radical scavenging activities. In the raspberry fractions, the hexane fraction also exhibited potent antioxidant activity. The cytotoxic effects of berries extracts in A2780 human ovarian carcinoma cells were measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Surprisingly, co-treatment with n-butanol (BuOH) fractions of berries showed stronger cytotoxic effects compared to the other fractions. These findings suggest that potent anticancer molecules are found in the BuOH fractions of berries that have stronger cytotoxic activity than antioxidants.

Dandelion (Taraxacum officinale) Flower Ethanol Extract Inhibits Cell Proliferation and Induces Apoptosis in Human Ovarian Cancer SK-OV-3 Cells

  • Choi, Eun-Jeong;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.552-555
    • /
    • 2009
  • This study investigated the proapoptotic effect of ethanol extracts obtained from dandelion (Taraxacum officinale) flower on human ovarian cancer SK-OV-3 cells. Cells were treated with dandelion flowers ethanol extract (DFE) ranging from 1.5625 to $100{\mu}g/mL$ for 24 hr. Significant antiproliferative effects of DFE were first observed from at $6.25{\mu}g/mL$ (p<0.05), and this inhibition showed in a dose-dependent manner. When cells were treated with more than $6.25{\mu}g/mL$ DFE, cell-cycle analysis showed that DFE caused an increase in the percentage of sub-G0/G1 cells and arrested at the S and G2/M phase in a dose-dependent manner. Moreover, apoptosis induction by DFE involved p53 activation and bax upregulation as well as downregulation of bcl-2. Our findings indicate that DFE resulted in apoptotic cell death, suggesting that DFE possesses potential anticancer properties.

Identification of Cisplatin-Resistance Associated Genes through Proteomic Analysis of Human Ovarian Cancer Cells and a Cisplatin-resistant Subline

  • Zhou, Jing;Wei, Yue-Hua;Liao, Mei-Yan;Xiong, Yan;Li, Jie-Lan;Cai, Hong-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6435-6439
    • /
    • 2012
  • Chemoresistance to cancer therapy is a major obstacle to the effective treatment of human cancers with cisplatin (DDP), but the mechanisms of cisplatin-resistance are not clear. In this study, we established a cisplatin-resistant human ovarian cancer cell line (COC1/DDP) and identified differentially expressed proteins related to cisplatin resistance. The proteomic expression profiles in COC1 before and after DDP treatment were examined using 2-dimensional electrophoresis technology. Differentially expressed proteins were identified using matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and high performance liquid chromatography-electrospray tandem MS (NanoUPLC-ESI-MS/MS). 5 protein spots, for cytokeratin 9, keratin 1, deoxyuridine triphosphatase (dUTPase), aarF domain containing kinase 4 (ADCK 4) and cofilin1, were identified to be significantly changed in COC1/DDP compared with its parental cells. The expression of these five proteins was further validated by quantitative PCR and Western blotting, confirming the results of proteomic analysis. Further research on these proteins may help to identify novel resistant biomarkers or reveal the mechanism of cisplatin-resistance in human ovarian cancers.

Association of a Newly Identified Variant of DNA Polymerase Beta (polβΔ63-123, 208-304) with the Risk Factor of Ovarian Carcinoma in India

  • Khanra, Kalyani;Bhattacharya, Chandan;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.1999-2002
    • /
    • 2012
  • Background: DNA polymerase is a single-copy gene that is considered to be part of the DNA repair machinery in mammalian cells. The encoded enzyme is a key to the base excision repair (BER) pathway. It is evident that pol beta has mutations in various cancer samples, but little is known about ovarian cancer. Aim: Identification of any variant form of $pol{\beta}$ cDNA in ovarian carcinoma and determination of association between the polymorphism and ovarian cancer risk in Indian patients. We used 152 samples to isolate and perform RT-PCR and sequencing. Results: A variant of polymerase beta (deletion of exon 4-6 and 11-13, comprising of amino acid 63-123, and 208-304) is detected in heterozygous condition. The product size of this variant is 532 bp while wild type pol beta is 1 kb. Our study of association between the variant and the endometrioid type shows that it is a statistically significant factor for ovarian cancer [OR=31.9 (4.12-246.25) with p<0.001]. The association between variant and stage IV patients further indicated risk (${\chi}^2$ value of 29.7, and OR value 6.77 with 95% CI values 3.3-13.86). The correlation study also confirms the association data (Pearson correlation values for variant/stage IV and variant/endometrioid of 0.44 and 0.39). Conclusion: Individuals from this part of India with this type of variant may be at risk of stage IV, endometrioid type ovarian carcinoma.

Mechanistic Analysis of Taxol-induced Multidrug Resistance in an Ovarian Cancer Cell Line

  • Wang, Ning-Ning;Zhao, Li-Jun;Wu, Li-Nan;He, Ming-Feng;Qu, Jun-Wei;Zhao, Yi-Bing;Zhao, Wan-Zhou;Li, Jie-Shou;Wang, Jin-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.4983-4988
    • /
    • 2013
  • Objectives: To establish a taxol-resistant cell line of human ovarian carcinoma (A2780/Taxol) and investigate its biological features. Methods: The drug-resistant cell line (A2780/Taxol) was established by continuous stepwise selection with increasing concentrations of Taxol. Cell morphology was assessed by microscopy and growth curves were generated with in vitro and in vivo tumor xenograft models. With rhodamine123 (Rh123) assays, cell cycle distribution and the apoptotic rate were analyzed by flow cytometry (FCM). Drug resistance-related and signal associated proteins, including P-gp, MRPs, caveolin-1, PKC-${\alpha}$, Akt, ERK1/2, were detected by Western blotting. Results: A2780/Taxol cells were established with stable resistance to taxol. The drug resistance index (RI) was 430.7. Cross-resistance to other drugs was also shown, but there was no significant change to radioresistance. Compared with parental cells, A2780/Taxol cells were significantly heteromorphous, with a significant delay in population doubling time and reduced uptake of Rh123 (p<0.01). In vivo, tumor take by A2780 cells was 80%, and tumor volume increased gradually. In contrast, with A2780/Taxol cells in xenograft models there was no tumor development. FCM analysis revealed that A2780/Taxol cells had a higher percentage of G0/G1 and lower S phase, but no changes of G2 phase and the apoptosis rate. Expression of P-gp, MRP1, MRP2, BCRP, LRP, caveolin-1, PKC-${\alpha}$, Phospho-ERK1/2 and Phospho-JNK protein was significantly up-regulated, while Akt and p38 MARK protein expression was not changed in A2780/Taxol cells. Conclusion: The A2780/Taxol cell line is an ideal model to investigate the mechanism of muti-drug resistance related to overexpression of drug-resistance associated proteins and activation of the PKC-${\alpha}/ERK$ (JNK) signaling pathway.

Effect of Resveratrol on Oral Cancer Cell Invasion Induced by Lysophosphatidic Acid

  • Kim, Jin Young;Cho, Kyung Hwa;Lee, Hoi Young
    • 치위생과학회지
    • /
    • 제18권3호
    • /
    • pp.188-193
    • /
    • 2018
  • The aim of the current study was to demonstrate the potential therapeutic efficacy of resveratrol in oral cancer patients. Lysophosphatidic acid (LPA) intensifies cancer cell invasion and metastasis, whereas resveratrol, a natural polyphenolic compound, possesses antitumor activity, suppressing cell proliferation and progression in various cancer cell lines (ovarian, gastric, oral, pancreatic, colon, and prostate cancer cells). In addition, resveratrol has been identified as an inhibitor of LPA-induced proteolytic enzyme expression and ovarian cancer invasion. Furthermore, resveratrol was shown to inhibit oral cancer cell invasion by downregulating hypoxia-inducible factor $1{\alpha}$ and vascular endothelial growth factor expression. Recently, we demonstrated that LPA is important for the expression of transcription factors TWIST and SLUG during epithelial-mesenchymal transition (EMT) in oral squamous carcinoma cells. In this study, we treated serum-starved cultures of oral squamous carcinoma cell line YD-10B with resveratrol for 24 hours prior to stimulation with LPA. To identify an optimal resveratrol concentration that does not induce apoptosis in oral squamous carcinoma cells, we determined the toxicity of resveratrol in YD-10B cells by assessing their viability using the MTT assay. Another assay was performed using Matrigel-coated cell culture inserts to detect oral cancer cell invasion activity. Immunoblotting was applied for analyzing protein expression of SLUG, TWIST1, E-cadherin, and GAPDH. We demonstrated that resveratrol efficiently inhibited LPA-induced oral cancer cell EMT and invasion by downregulating SLUG and TWIST1 expression. Therefore, resveratrol may potentially reduce oral squamous carcinoma cell invasion and metastasis in oral cancer patients, improving their survival outcomes. In summary, we identified new targets for the development of therapies against oral cancer progression and characterized the therapeutic potential of resveratrol for the treatment of oral cancer patients.

Enhancement of Gene Delivery to Cancer Cells by a Retargeted Adenovirus

  • Oh Kwang Seok;Engler Jeffrey A.;Joung In Sil
    • Journal of Microbiology
    • /
    • 제43권2호
    • /
    • pp.179-182
    • /
    • 2005
  • The inefficiency of in vivo gene transfer using currently available vectors reflects a major hurdle in cancer gene therapy. Both viral and non-viral approaches that improve gene transfer efficiency have been described, but suffer from a number of limitations. Herein, a fiber-modified adenovirus, carrying the small peptide ligand on the capsid, was tested for the delivery of a transgene to cancer cells. The fiber-modified adenovirus was able to mediate the entry and expression of a $\beta$-galactosidase into cancer cells with increased efficiency compared to the unmodified adenovirus. Particularly, the gene transfer efficiency was improved up to 5 times in OVCAR3 cells, an ovarian cancer cell line. Such transduction systems hold promise for delivering genes to transferrin receptor overexpressing cancer cells, and could be used for future cancer gene therapy.