• Title/Summary/Keyword: ovarian cancer

Search Result 553, Processing Time 0.026 seconds

Anti-Menopausal Effect of Heat-Killed Bifidobacterium breve HDB7040 via Estrogen Receptor-Selective Modulation in MCF-7 Cells and Ovariectomized Rats

  • Hyeon Jeong Kim;Kyung Min Kim;Min-Kyu Yun;Duseong Kim;Johann Sohn;Ji-Won Song;Seunghun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1580-1591
    • /
    • 2024
  • Menopause is induced by spontaneous ovarian failure and leads to life quality deterioration with various irritating symptoms. Hormonal treatment can alleviate these symptoms, but long-term treatment is closely associated with breast and uterine cancer, and stroke. Therefore, developing alternative therapies with novel anti-menopausal substances and improved safety is needed. In our study, heat-killed Bifidobacterium breve HDB7040 significantly promoted MCF-7 cell proliferation in a dose-dependent manner under estrogen-free conditions, similar to 17β-estradiol. This strain also triggered ESR2 expression, but not ESR1, in MCF-7 cells. Moreover, administrating HDB7040 to ovariectomized (OVX) Sprague-Dawley (SD) female rats reduced estrogen deficiency-induced weight gain, fat mass, blood triglyceride, and total cholesterol levels. It also recovered collapsed trabecular microstructure by improving trabecular morphometric parameters (bone mineral density, bone volume per tissue volume, trabecular number, and trabecular separation) and decreasing blood alkaline phosphatase levels with no significant changes in uterine size and blood estradiol. HDB7040 also significantly regulated the expression of Tff1, Pgr, and Esr2, but not Esr1 in uteri of OVX rats. Heat-killed B. breve HDB7040 exerts an anti-menopausal effect via the specific regulation of ERβ in vitro and in vivo, suggesting its potential as a novel substance for improving and treating menopausal syndrome.

HPLC, NMR Based Characterization, Antioxidant and Anticancer Activities of Chemical Constituents from Therapeutically Active Fungal Endophytes

  • Waqas Hussain Shah;Wajiha Khan;Sobia Nisa;Michael H.J. Barfuss;Johann Schinnerl;Markus Bacher;Karin Valant-Vetschera;Ashraf Ali;Hiba-Allah Nafidi;Yousef A. Bin Jardan;John P. Giesy
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1452-1463
    • /
    • 2024
  • Fungi generate different metabolites some of which are intrinsically bioactive and could therefore serve as templates for drug development. In the current study, six endophytic fungi namely Aspergillus flavus, Aspergillus tubigenesis, Aspergillus oryzae, Penicillium oxalicum, Aspergillus niger, and Aspergillus brasiliensis were isolated and identified from the medicinal plant, Silybum marianum. These endophytic fungi were identified through intra transcribed sequence (ITS) gene sequencing. The bioactive potentials of fungal extracts were investigated using several bioassays such as antibacterial activity by well-diffusion, MIC, MBC, anti-biofilm, antioxidant, and haemolysis. The Pseudomonas aeruginosa PAO1 was used to determine the antibiofilm activity. The ethyl acetate extract of Aspergillus flavus showed strong to moderate efficacy against Staphylococcus aureus, Escherichia coli, P. aeruginosa, and Bacillus spizizenii. Aspergillus flavus and Aspergillus brasiliensis exhibited significant antibiofilm activity with IC50 at 4.02 and 3.63 mg/ml, while A. flavus exhibited maximum antioxidant activity of 50.8%. Based on HPLC, LC-MS, and NMR experiments kojic acid (1) and carbamic acid (methylene-4, 1-phenylene) bis-dimethyl ester (2) were identified from A. flavus. Kojic acid exhibited DPPH free radical scavenging activity with an IC50 value of 99.3 ㎍/ml and moderate activity against ovarian teratocarcinoma (CH1), colon carcinoma (SW480), and non-small cell lung cancer (A549) cell lines. These findings suggest that endophytic fungi are able to produce promising bioactive compounds which deserve further investigation.

Immunohistochemical and Immunogold Electron Microscopic Studies on Effects of Cis-platin on the Ciliogenesis of Rat Oviducts (Cis-Platin이 흰쥐 난관의 섬모형성에 미치는 영향에 대한 면역조직학적 및 면역도금법에 의한 전자현미경적 연구)

  • Kim, Jin-Kook;Kim, Won-Kyu;Paik, Doo-Jin;Chung, Ho-Sam
    • Applied Microscopy
    • /
    • v.30 no.1
    • /
    • pp.45-59
    • /
    • 2000
  • Cis-platin is a widely used anticancer drug against certain solid tumors such as malignant ovarian tumor, malignant carcinoma of head and neck, bladder cancer and cervical cancer of uterus, and its major mechanism of action is inhibition of DNA synthesis of the tumor cell. To investigate the inhibitory effects of cis-platin on the ciliogensis of the ciliated cells in the mucosa of oviduct, the author pursued the alterations of $\alpha-tubulin$, which is the main constituent of the microtubles in cilia, after cis-platin treatment. To eliminate the possible variations due to ovarian cycle, female Spargue-Dawley rats ($150\sim200gm$ in B.W.) were pretreated with estradiol benzoate (20 mg/kg, once a day, for 4 consecutive days). Animals were administrated with cis-platin (6 mg/kg, i.p.) and sacrificed at 1day, 3days, 5days and 7days after treatment, respectively. Immunohistochemistry for $\alpha-tubulin$ using mouse anti-rat $\alpha-tubulin$ monoclonal antibody as primary antibody was done. Immunogold electronmicroscopy for intracellular distributions of $\alpha-tubulin$ was also performed with same primary antibody and Goat anti- mouse IgM which is preconjugated with gold particles of 15 nm as secondary antibody. The results obtained were as follows; 1. Strong immunoreactivity of $\alpha-tubulin$ was observed in ciliated cells of oviducts at 1, 3 and 5 days after estradiol pretreatment. 2. Weak immunoreactivity of $\alpha-tubulin$ was observed in ciliated cells of oviducts at 1 and 3 days after cis-platin treatment but it was recovered to strong immunoreactivity in 5 days 3. In immunogold electronmicroscopy, density of gold particles for $\alpha-tubulin$ reactions was decreased in apical cytoplasm, but few changes were observed in basal body or cilia at 1 and 3 days after cis-platin treatment. From these above results, it is indicated that synthesis of $\alpha-tubulin$ in ciliated cells of rat oviduct is inhibited by cis-platin treatment.

  • PDF

The Anticancer Mechanisms of Taxol-Diethylenetriamine pentaacetate Conjugate in HT29 Human Colorectal Cancer cells

  • Lee, Na-Kyung;Kim, Hyun-Jeong;Yang, Seung-Ju;Kim, Yoon-Suk;Choi, Hyun-Il;Shim, Moon-Jeong;Awh, Ok-Doo;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.237-243
    • /
    • 2001
  • Taxol, a natural product extracted from the Taxus brevifolia, is known to have significant anti-tumor activities against many common cancers, including ovarian and breast cancers. Despite the pronounced anti-tumor activity of this compound, its poor solubility in aqueous solutions hampers its clinical applications. We studied the anticancer mechanisms of the water-soluble taxol diethylenetriamine pentaacetate (DTPA) used for radiolabeling, and compared it to that of taxol. In vitro cytotoxicities of taxol and taxol-DTPA conjugate were tested in HT29 human colorectal cancer cells by the MTT method. As the result, the $IC_{50}$ value of the taxol-DTPA conjugate was about three fold higher than that of taxol. When analyzed by an agarose gel electrophoresis, the DNA ladders became evident after the incubation of cells with the taxol-DTPA conjugate for 24 h. We also found morphological changes of the cells undergoing apoptosis with electron microscopy Next, we examined the signal pathway of taxol-DTPA conjugate-induced apoptosis in HT29 cells. The activation of extracellular signal-regulated protein kinase (ERK1/2) occurred at 10, 30, 60 and 120 min after 200 nM taxol-DTPA conjugate treatment. The pretreatment of the MEK inhibitor (PD98059) completely blocked the taxol-DTPA conjugate-induced ERK1/2 activation. The activated ERK1/2 translocated into the nucleus at the same time and phosphorylated its transcriptional factor, c-Jun. These results suggest that the taxol-DTPA conjugate has an apoptotic activity in HT29 cells, and that its proapoptic activity might be related with the signal transduction via ERK1/2 and c-Jun similar to that of taxol.

  • PDF

Network-based regularization for analysis of high-dimensional genomic data with group structure (그룹 구조를 갖는 고차원 유전체 자료 분석을 위한 네트워크 기반의 규제화 방법)

  • Kim, Kipoong;Choi, Jiyun;Sun, Hokeun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1117-1128
    • /
    • 2016
  • In genetic association studies with high-dimensional genomic data, regularization procedures based on penalized likelihood are often applied to identify genes or genetic regions associated with diseases or traits. A network-based regularization procedure can utilize biological network information (such as genetic pathways and signaling pathways in genetic association studies) with an outstanding selection performance over other regularization procedures such as lasso and elastic-net. However, network-based regularization has a limitation because cannot be applied to high-dimension genomic data with a group structure. In this article, we propose to combine data dimension reduction techniques such as principal component analysis and a partial least square into network-based regularization for the analysis of high-dimensional genomic data with a group structure. The selection performance of the proposed method was evaluated by extensive simulation studies. The proposed method was also applied to real DNA methylation data generated from Illumina Innium HumanMethylation27K BeadChip, where methylation beta values of around 20,000 CpG sites over 12,770 genes were compared between 123 ovarian cancer patients and 152 healthy controls. This analysis was also able to indicate a few cancer-related genes.

Influence of Ionizing Radiation on Ovarian Carcinoma SKOV-3 Xenografts in Nude Mice under Hypoxic Conditions

  • Zhang, Yong-Chun;Jiang, Gang;Gao, Han;Liu, Hua-Min;Liang, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2353-2358
    • /
    • 2014
  • Purpose: We aimed to detect the expression of HIF-1${\alpha}$, VEGF, HPSE-1 and CD31 in SKOV3 xenografts in nude mice treated with different doses of ionizing radiation, trying to explore the possible mechanism of hypoxia and radioresistance. Methods: Nude mice bearing SKOV3 xenografts were randomly divided into 4 groups: Group A (control group, no ionizing radiation), Group B (treated with low dose of ionizing radiation: 50cGy), Group C (treated with high dose of ionizing radiation: 300cGy), Group D ( combined ionizing radiation, treated with ionizing radiation from low dose to high dose : 50cGy first and 300cGy after 6h interval). The mRNA levels of HIF-1 and VEGF in each group were detected by real time polymerase chain reaction, while HPSE-1 expression was measured by ELISA. The microvessel density (MVD) and hypoxic cells were determined through immunohistochemical (IHC) staining of CD31 and HIF-1a. Results: Significant differences of HIF-1${\alpha}$ mRNA level could be found among the 4 groups (F=74.164, P<0.001): Group C>Group A>Group D> Group B. The mRNA level of VEGF in Group C was significantly higher than in the other three groups (t=-5.267, P=0.000), while no significant difference was observed among Group A, B and D (t=1.528, 1.588; P=0.205, 0.222). In addition, the MVD was shown to be the highest in Group C (t=6.253, P=0.000), whereas the HPSE-1 level in Group A was lower than in Group B (t=14.066, P=0.000) and higher than in Group C (t=-21.919, P=0.000), and similar with Group D (t=-2.066, P=0.058). Through IHC staining of HIF-1a, the expression of hypoxic cells in Group A was (++), Group B was (+), Group C was (+++) and Group D was (+). Conclusion: Ionizing radiation with lowerdoses might improve tumor hypoxia through inhibiting the expression of HIF-1 and HPSE-1, whereas higherdoses worsen tumor hypoxic conditions by up-regulating HIF-1${\alpha}$, HPSE-1, VEGF and CD31 levels. A protocol of low-dose ionizing radiation followed by a high-dose irradiation might at least partly improve tumor hypoxia and enhance radiosensitivity.

Epigenetic modification of long interspersed elements-1 in cumulus cells of mature and immature oocytes from patients with polycystic ovary syndrome

  • Pruksananonda, Kamthorn;Wasinarom, Artisa;Sereepapong, Wisan;Sirayapiwat, Porntip;Rattanatanyong, Prakasit;Mutirangura, Apiwat
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.2
    • /
    • pp.82-89
    • /
    • 2016
  • Objective: The long interspersed elements (LINE-1, L1s) are a group of genetic elements found in large numbers in the human genome that can translate into phenotype by controlling genes. Growing evidence supports the role of epigenetic in polycystic ovary syndrome (PCOS). The purpose of this study is to evaluate the DNA methylation levels in LINE-1 in a tissue-specific manner using cumulus cells from patients with PCOS compared with normal controls. Methods: The study included 19 patients with PCOS and 22 control patients who were undergoing controlled ovarian hyperstimulation. After oocyte retrieval, cumulus cells were extracted. LINE-1 DNA methylation levels were analysed by bisulfite treatment, polymerase chain reaction, and restriction enzyme digestion. The Connection Up- and Down-Regulation Expression Analysis of Microarrays software package was used to compare the gene regulatory functions of intragenic LINE-1. Results: The results showed higher LINE-1 DNA methylation levels in the cumulus cells of mature oocytes in PCOS patients, 79.14 (${\pm}2.66$) vs. 75.40 (${\pm}4.92$); p=0.004, but no difference in the methylation of cumulus cells in immature oocytes between PCOS and control patients, 70.33 (${\pm}4.79$) vs. 67.79 (${\pm}5.17$); p=0.155. However, LINE-1 DNA methylation levels were found to be higher in the cumulus cells of mature oocytes than in those of immature oocytes in both PCOS and control patients. Conclusion: These findings suggest that the epigenetic modification of LINE-1 DNA may play a role in regulating multiple gene expression that affects the pathophysiology and development of mature oocytes in PCOS.

Antitumor Activity of 7-[2-(N-Isopropylamino)ethyl]-(20s)-camptothecin, CKD602, as a Potent DNA Topoisomerase I Inhibitor

  • Lee, Jun-Hee;Lee, Ju-Mong;Kim, Joon-Kyum;Ahn, Soon-Kil;Lee, Sang-Joon;Kim, Mie-Young;Jew, Sang-Sup;Park, Jae-Gab;Hong, Chung-Il
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.581-590
    • /
    • 1998
  • We developed a novel water-soluble camptothecin analobue, CKD602, and evaluated the inhibition of topoisomerase I and the antitumor activities against mammalian tumor cells and human tumor xenografts. CKD602 was a nanomolar inhibitor of the topoisomerase I enzyme in the cleavable complex assay. CKD602 was found to be 3 times and slightly more potent than topotecan and camptothecin as inhibitors of topoisomerase, respecitively. In tumor cell cytotoxicity, CKD602 was more potent than topotecan in 14 out of 26 human cancer cell lines tested, while it was comparable to camptothecin. CKD602 was tested for the in vivo antitumor activity against the human tumor xenograft models. CKD602 was able to imduce regression of established HT-29, WIDR and CX-1 colon tumors, LX-1 lung tumor, MX-1 breast tumor and SKOV-3 ovarian tumor as much as 80, 94, 76, 67, 87% and 88%, respectively, with comparable body weight changes to those of topotecan. Also the therapeutic margin (R/Emax: maximum tolerance dose/$ED-{58}$) of CKD602 was significantly higher than that of topotecan by 4 times. Efficacy was determined at the maximal tolerated dose levels using schedule dependent i.p. administration in mice bearing L1210 leukemia. On a Q4dx4 (every 4 day for 4 doses) schedule, the maximum tolerated dose (MTD) was 25 mg/kg per administration, which caused great weight loss and lethality in <5% tumor bearing mouse. this schedule brought significant increase in life span (ILS), 212%, with 33% of long-term survivals. The ex vivo antitumor activity of CKD602 was compared with that of topotecan and the mean antitumor index (ATI) values recorded for CKD602 were significantly higher than that noted for topotecan. From these results, CKD602 warrants further clinical investigations as a potent inhibitor of topoisomerase I.

  • PDF

The Anticommons: BRCA Gene Patenting Controversy in the United States (유전자와 생명의 사유화, 그리고 반공유재의 비극: 미국의 BRCA 인간유전자 특허 논쟁)

  • Yi, Doogab
    • Journal of Science and Technology Studies
    • /
    • v.12 no.1
    • /
    • pp.1-43
    • /
    • 2012
  • This paper examines the American Civil Liberties Union(ACLU)'s recent legal challenge on patents held by Myriad Genetics on two genes (BRCA1 and BRCA2) associated with a high risk of breast and ovarian cancer. Instead of analyzing the ACLU's objections to the BRCA patents in terms of its legal technicalities and normative ethical principles, this paper seeks to situate this legal case in the broader historical context of the shifting understanding of the relationship between private ownership, economic development, and the public interest in academic sciences. This paper first briefly chronicles a series of scientific developments and key legal decisions involving patenting of life forms, including genetically engineered micro-organisms animals and biological materials of human origins like cell cultures and genes, that led to the US Patent and Trademark Office(USPTO)'s official guidelines on human gene patenting in 2001. At another level, this paper analyzes the expansion of the scope of intellectual property rights in the life sciences in terms of shifting economic and legal assumptions about public knowledge and its role for economic development in the 1970s. I then show how these economic, legal, and ethical ideas that linked private ownership and the public interest have been challenged from the 1990s, calling for revisions in intellectual property laws regarding a wide array of life forms. The tragedy of the anticommons in human gene patenting, according to ACLU, has severely undermined creative scientific activities, medical innovations, access to health care and rights to life among cancer patient groups. ACLU's objection to human gene patenting on several US-constitutional grounds in turn suggests issues regarding intellectual property are critically linked to vital issues pertinent to the creative communities in arts and sciences, such as free exchange of ideas, censorship and monopoly, and free expression and piracy etc.

  • PDF

Protective Effect of Dopaol β-D-glucoside Isolated from East Asian Monk'shood on Cisplatin-Induced Nephrotoxicity (한라돌쩌귀로부터 분리된 Dopaol β-D-glucoside의 신장독성 보호효과)

  • Nho, Jong Hyun;Jung, Ja Kyun;Jung, Ho Kyung;Jang, Ji Hun;Jung, Da Eun;Lee, Ki Ho;Kim, A Hyeon;Sung, Tae Kyoung;Park, Ho;Cho, Hyun Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.231-237
    • /
    • 2017
  • Background: Cisplatin is one of the most extensively used chemotherapeutic agents for the treatment of cancer, including bladder, and ovarian cancers. However, it has been shown to induce nephrotoxicity, despite being an outstanding anti-cancer drug. In this study, we investigated the protective effect of dopaol ${\beta}$-D-glucoside (dopaol) on cisplatin-induced nephrotoxicity. Methods and Results: To confirm the protective effect of dopaol on cisplatin-induced nephrotoxicity, HK-2 cells were treated with $20{\mu}M$ cisplatin and $80{\mu}M$ dopaol. Cisplatin increased apoptosis, caspase-3 activity and mitochondrial dysfunction; however pretreatment with $80{\mu}M$ dopaol successfully attenuated apoptosis, caspase-3 activity and mitochondrial dysfunction. To evaluate the protective effect dopaol on cisplatin-induced nephrotoxicity in vivo, we used an animal model (balb/c mice, 20 mg/kg, i.p. once/day for 3 day). The results were similar to those obtained using HK-2 cells; renal tubular damage and neutrophilia induced by cisplatin reduced following dopaol injection (10 mg/kg, i.p. once/day for 3 day). Conclusions: These results indicate that dopaol treatment reduced cisplatin-induced nephrotoxicity in vitro and in vivo, and can be used to treat cisplatin-induced nephrotoxicity. However, further studies are required to determine the toxicity high dose dopaol and the signal pathways involved in its mechanism of action in animal models.