• Title/Summary/Keyword: output prediction

Search Result 733, Processing Time 0.024 seconds

The Hybrid Multi-layer Inference Architectures and Algorithms of FPNN Based on FNN and PNN (FNN 및 PNN에 기초한 FPNN의 합성 다층 추론 구조와 알고리즘)

  • Park, Byeong-Jun;O, Seong-Gwon;Kim, Hyeon-Gi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.378-388
    • /
    • 2000
  • In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.

  • PDF

Design and Output Characteristic Analysis of Electro-Mechanical Ignition Safety Device (전기-기계식 점화안전장치 설계 및 출력 특성 해석)

  • Jang, Seung-Gyo;Lee, Hyo-Nam;Oh, Jong-Yun;Oh, Seok-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1166-1173
    • /
    • 2011
  • Electro-Mechanical Ignition Safety Device(EMISD) for solid rocket motor is designed and manufactured. The EMISD utilizes a true rotary solenoid for arming mechanism and an electric squib(initiator) for generating ignition energy. In order to prove the ignition capability of the EMISD, 10-cc Closed Bomb Test(CBT) is performed, which measures the pressure built by high temperature and high pressure gas generated by operating EMISD. The pressure built in the free volume of 10-cc closed bomb and the opening time of the ignition gas outlet are calculated using one dimensional gas dynamic model which is composed of the ideal gas equation and mass-energy conservation equation. Comparing the test result with model prediction, it is realized that the pressure built in the free volume of closed bomb due to the firing of EMISD, has the efficiency ratio of about 34%.

Analysis of Steady State Error on Simple FLC (단순 FLC의 정상상태오차 해석)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.897-901
    • /
    • 2011
  • This paper presents a TS (Takagi-Sugeno) type FLC (Fuzzy Logic Controller) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC controller. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In the design of the system, we use a variety of response characteristics like stability, rising time, overshoot, settling time, steady-state error. In particular, it is important for a stable system design to predict the steady-state error because the system's steady-state response of the system is related to the overall quality. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC in the view of steady-state error. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. As well as the FLC parameters of consequence linear equations affect the stability of the system, it also affects the steady-state error. In this study, The system according to the parameter of consequence linear equations of FLC predict the steady-state error and the method to remove the system's steady-state error is proposed using the prediction error value. The simulation is carried out to determine the usefulness of the proposed method.

A Fast Motion Estimation Scheme using Spatial and Temporal Characteristics (시공간 특성을 이용한 고속 움직임 백터 예측 방법)

  • 노대영;장호연;오승준;석민수
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.237-247
    • /
    • 2003
  • The Motion Estimation (ME) process is an important part of a video encoding systems since they can significantly reduce bitrate with keeping the output quality of an encoded sequence. Unfortunately this process may dominate the encoding time using straightforward full search algorithm (FS). Up to now, many fast algorithms can reduce the computation complexity by limiting the number of searching locations. This is accomplished at the expense of less accuracy of motion estimation. In this paper, we introduce a new fast motion estimation method based on the spatio-temporal correlation of adjacent blocks. A reliable predicted motion vector (RPMV) is defined. The reliability of RPMV is shown on the basis of motion vectors achieved by FS. The scalar and the direction of RPMV are used in our proposed scheme. The experimental results show that the proposed method Is about l1~14% faster than the nearest neighbor method which is a wellknown conventional fast scheme.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

Analytical Evaluation of Airborne Noise for the Building Structure' on Railway Transportation Systems (철도부지 상부 입체 건축물의 공기전달음 소음 예측)

  • Yeon, Jun-Oh;Kim, Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1096-1102
    • /
    • 2013
  • The useful practical land shall be reserved when an artificial land covers the railway and road. However, the problem is that since the artificial land places directly on the top of noise sources likely on the railway and road there will arise the weak points, noise and vibration. On this study based on creating the artificial land on the top of a railway vehicle base and placing a tenement on that land, it was comprehended the noise influence from the railway car through the simulation. In order to secure the input value for the simulation, at first measured the noise condition of the railway station building and the railway vehicle base. The output value for the railway station building (place A) was around (53.6~57.6) dB(A), the equivalent continuous sound level for an hour, and for the railway station building (place B) it was around (63.7~68.9) dB. The maximum outdoor noise of the tenement on the artificial land was measured as 64.1 dB(A) under the fixed condition on the simulation modeling. The built purpose of placing the artificial land to prevent the noise influence from the railway met the expectation to be less influenced on the tenement. Rather, because of placing the artificial land the noise level on the lower space could be increased so there requires having a noise control.

Design of a Piezocomposite Generating Element and Its Characteristics (압전-복합재료 발전 소자의 설계 및 특성)

  • Tien, Minh Tri;Kim, Jong-Hwa;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.867-872
    • /
    • 2010
  • Unused energy derived from sources in nature can be captured and stored for future use, for example, to recharge a battery or power a device; this process of capturing and storing energy is called energy harvesting. Extensive investigations are being carried out in order to use piezoelectricity to harvest the energy generated by body movements or machine vibrations. This paper presents a simple analytical model that describes the output voltage effectiveness of a Piezocomposite Generating Element (PCGE) from vibration and its experimental verification. PCGE is composed of carbon/epoxy, PZT, and glass/epoxy layers. During the manufacturing process, the stacked layers were cured at $177^{\circ}C$ in an autoclave, which created residual stresses in PCGE and altered the piezoelectric properties of the PZT layer. In the experiments, three kinds of lay-up configurations of PCGE were considered to verify the proposed prediction model and to investigate its capability to convert oscillatory mechanical energy into electrical energy. The predicted performance results are in good agreement with observed experimental ones.

Design and Modeling of a DDS Driven Offset PLL with DAC (DAC를 적용한 DDS Driven Offset PLL모델링 및 설계)

  • Kim, Dong-Sik;Lee, Hang-Soo;Kim, Jong-Pil;Kim, Seon-Ju
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • In this paper, we presents the modeling and implementation of the DDS(Direct Digital synthesizer) driven offset PLL(Pghase Locked Loop) with DAC(Digital Analog Converter) for coarse tune. The PLL synthesizer was designed for minimizing the size and offset frequency and DDS technique was used for ultra low noise and fast lock up time, also DAC was used for coarse tune. The output phase noise was analyzed by superposition theory with the phase noise transfer function and noise source modeling. the phase noise prediction was evaluated by comparing with the measured data. The designed synthesizer has ultra fast lock time within 6 usec and ultra low phase noise performance of -120 dBc/Hz at 10KHz offset frequency.

Mathematical Modeling & Empirical Analysis for Estimation of Fuel Consumption using OBD-II Data in Vehicle (차량 OBD-II 데이터를 이용한 연료 소모량 추정의 수식적 모델링 및 실증 분석)

  • Lee, Min-Goo;Park, Yong-Guk;Jung, Kyung-Kwon;Yoo, Jun-Jae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.9-14
    • /
    • 2011
  • This Paper proposed the prediction method of fuel consumption from vehicle informations through OBD-II Interface. We assumed RPM, TPS had a relationship with fuel consumption. We got the output as fuel-consumption from a vehicle RPM, TPS as input by using polynomial equation. We had modelling as quadric function with OBD-II data and fuel consumption data supported by automotive company in real. In order to verify the effectiveness of proposed method, 5 km real road-test was performed. The results showed that the proposed method can estimate precisely the fuel consumption from vehicle multi-data.

Perfectly-Matched DC Blocks Terminated in Arbitrary Impedances (임의의 종단 임피던스를 갖는 DC Block의 완전 정합)

  • Ahn, Hee-Ran;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.895-903
    • /
    • 2007
  • Design equations of DC blocks terminated in arbitrary impedances are newly suggested and a microstrip DC block is tested for the perfect matching. The DC block is a two-port passive component and the power excited at a port is transmitted into another port. However, all the excited power at the input can not be delivered to the output and therefore most of the conventional DC blocks can not be perfectly matched with arbitrary termination impedances. To solve the matching problem, its one-port equivalent resonant circuit model, front which design equations can be derived, is newly suggested. Using the derived design equations, any DC block can be designed, perfectly matched without any restriction of coupling coefficients. To verify the derived design equations, measurements were carried out and the results are in good agreement with prediction, showing insertion and return losses at 4.1 GHz are 0.82dB and -31dB, respectively.