• Title/Summary/Keyword: outflow patterns

Search Result 46, Processing Time 0.028 seconds

What are the benefits and challenges of multi-purpose dam operation modeling via deep learning : A case study of Seomjin River

  • Eun Mi Lee;Jong Hun Kam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.246-246
    • /
    • 2023
  • Multi-purpose dams are operated accounting for both physical and socioeconomic factors. This study aims to evaluate the utility of a deep learning algorithm-based model for three multi-purpose dam operation (Seomjin River dam, Juam dam, and Juam Control dam) in Seomjin River. In this study, the Gated Recurrent Unit (GRU) algorithm is applied to predict hourly water level of the dam reservoirs over 2002-2021. The hyper-parameters are optimized by the Bayesian optimization algorithm to enhance the prediction skill of the GRU model. The GRU models are set by the following cases: single dam input - single dam output (S-S), multi-dam input - single dam output (M-S), and multi-dam input - multi-dam output (M-M). Results show that the S-S cases with the local dam information have the highest accuracy above 0.8 of NSE. Results from the M-S and M-M model cases confirm that upstream dam information can bring important information for downstream dam operation prediction. The S-S models are simulated with altered outflows (-40% to +40%) to generate the simulated water level of the dam reservoir as alternative dam operational scenarios. The alternative S-S model simulations show physically inconsistent results, indicating that our deep learning algorithm-based model is not explainable for multi-purpose dam operation patterns. To better understand this limitation, we further analyze the relationship between observed water level and outflow of each dam. Results show that complexity in outflow-water level relationship causes the limited predictability of the GRU algorithm-based model. This study highlights the importance of socioeconomic factors from hidden multi-purpose dam operation processes on not only physical processes-based modeling but also aritificial intelligence modeling.

  • PDF

A Markov Chain Model for Population Distribution Prediction Considering Spatio-Temporal Characteristics by Migration Factors (이동요인별 시·공간적 인구이동 특성을 고려한 인구분포 예측: 마르코프 연쇄 모형을 활용하여)

  • Park, So Hyun;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.351-365
    • /
    • 2019
  • This study aims to predict the changes in population distribution in Korea by considering spatio-temporal characteristics of major migration reasons. For the purpose, we analyze the spatio-temporal characteristics of each major migration reason(such as job, family, housing, and education) and estimate the transition probability, respectively. By appling Markov chain model processes with the ChapmanKolmogorov equation based on the transition probability, we predict the changes in the population distribution for the next six years. As the results, we found that there were differences of population changes by regions, while there were geographic movements into metropolitan areas and cities in general. The methodologies and the results presented in this study can be utilized for the provision of customized planning policies. In the long run, it can be used as a basis for planning and enforcing regionally tailored policies that strengthen inflow factors and improve outflow factors based on the trends of population inflow and outflow by region by movement factors as well as identify the patterns of population inflow and outflow in each region and predict future population volatility.

Analysis of Change Transitions in Regional Types in Emergency Department Patient Flows of in Jeonlado (2014-2018) (전라지역 응급실 환자의 유출입 분석 및 지역유형 변화 추이)

  • Lee, Jae-Hyeon;Lee, Sung-Min;Kim, Seongjung;Oh, Mi-Ra
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.126-131
    • /
    • 2020
  • This study analyzed the inflow and outflow patterns of emergency department patients, to identify changes in regional types in cities, counties, and districts in Jeonlado, Korea. Data of areas in Jeonlado for 2014 to 2018 were extracted from the National Emergency Department Information System. The extracted data includes the patients' and emergency medical institution addresses, which were used to calculate the relevance index (RI) and commitment index (CI). The calculated indices were classified into regional types by applying cluster analysis. A non-parametric method, Kruskal-Wallis test, was employed to examine the differences between years for RI and CI by regional types. The results of cluster analysis using the relevance and commitment indices revealed three regional types. Regions in cluster 1 were classified as outflow type, in cluster 2 as inflow type, and in cluster 3 as self-sufficient. RI and CI were calculated for each cluster or regional type. There were no significant differences between years in cluster 2 (inflow type) and cluster 3 (self-sufficient type). In cluster 1 (outflow type), there were no significant differences in CI between the years; however, there were significant differences in RI between 2014 and 2017, and 2014 and 2018. It is difficult to see that the emergency medical environment has improved due to the increased concentration of emergency medical care.

A Study on the Flow Path Position Design of Waviness Friction Pad for Drag Torque Reduction in Wet Type DCT (파형 습식클러치의 드래그 토크 저감을 위한 파형내 유로 위치 설정 설계 연구)

  • Cho, Junghee;Han, Juneyeol;Kim, Woojung;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Drag torque reduction in a wet clutch pack is a key aspect of the design process of the dual clutch transmission (DCT) system. In order to reduce the drag torque caused by lubricant shear resistance, recently developed wet clutch pack systems of DCT, as well as automatic transmission and other four-wheel drive (4WD) couplings, frequently utilize wavy wet clutch pads. Therefore, wavy shape of friction pad are made on the groove patterns like waffle pattern for the reduction of drag torque. Additionally, the groove patterns are designed with larger channels at several locations on the friction pad to facilitate faster outflow of lubricant. However, channel performance is a function of the waviness of the friction pad at the location of the particular channel. This is because the discharge sectional area varies according to the waviness amplitude at the location of the particular channel. The higher location of the additional channel on the friction pad results in a larger cross-sectional area, which allows for a larger flow discharge rate. This results in reduction of the drag torque caused by the shear resistance of DCTF, because of marginal volume fraction of fluid (VOF) in the space between the friction pad and separator. This study computes the VOF in the space between the friction pad and separator, the hydrodynamic pressure developed, and the shear resistance of friction torque, by using CFD software (FLUENT). In addition, the study investigates the dependence of these parameters on the location and waviness amplitude of the channel pattern on the friction pad. The paper presents design guidelines on the proper location of high waviness amplitude on wavy friction pads.

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF

Factors affecting waterproof efficiency of grouting in single rock fracture

  • Lee, Hang Bok;Oh, Tae-Min;Park, Eui-Seob;Lee, Jong-Won;Kim, Hyung-Mok
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.771-783
    • /
    • 2017
  • Using a transparent fracture replica with aperture size and water-cement ratio (w/c), the factors affecting the penetration behavior of rock grouting were investigated through laboratory experiments. In addition, the waterproof efficiency was estimated by the reduction of water outflow through the fractures after the grout curing process. Penetration behavior shows that grout penetration patterns present similarly radial forms in all experimental cases; however, velocity of grout penetration showed clear differences according to the aperture sizes and water-cement ratio. It can be seen that the waterproof efficiency increased as the aperture size and w/c decreased. During grout injection or curing processes, air bubbles formed and bleeding occurred, both of which affected the waterproof ability of the grouting. These two phenomena can significantly prevent the successful performance of rock grouting in field-scale underground spaces, especially at deep depth conditions. Our research can provide a foundation for improving and optimizing the innovative techniques of rock grouting.

On the Possible Role of Local Thermal Forcing on the Japan Sea Circulation (동해의 열적작용이 해수순환에 미칠 수 있는 영향에 관한 고찰)

  • Seung, Young-Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 1989
  • It has been believed that the circulation in the Japan Sea involves separation of current from the Korean coast and formation of a cold cyclonic gyre in the north. To explain this, a simple quasi-geostrophic linear model is considered. The model is basically of an inflow-outflow system. The local forcings, wind and air-sea heat exchange together with damping (both mechanical and thermal), are imposed upon. The results show that only the buoyancy damping due to perturbations from local thermal adjustment can cause the separation and the gyre. Various types of circulation patterns are possible depending on the intensity of the thermal forcing.

  • PDF

A Method of Evaluating Profitability and Risk of Multiple Investments Applying Internal Rate of Return

  • Mizumachi, Tadahiro
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.121-130
    • /
    • 2010
  • In today's uncertain economic environment, economic risk is inherent in making large investments on manufacturing facilities. It is, therefore, practically meaningful to divide investment over multiple periods, reducing the risk of investment. Then, the cash-flow over the entire planning horizon would comprise positive inflow and negative outflow. In this case, in general, evaluation by internal rate of return (IRR) is not feasible, because multiple IRRs are involved. This paper deals with a problem of evaluating profitability, as well as risk, of investment alternatives made in multiple times of investment over the entire horizon. Typically, an additional investment is required after the initial one, for expanding manufacturing capacity or other reasons. The paper pays attention to a unit cash-flow over two periods, decomposing the total cash-flow into a series of unit cash-flow patterns. It is easy to evaluate profitability of a unit cash-flow by using IRR. The total cash-flow can be decomposed into the series of two types of unit cash-flows: an investment type one (negative-positive) and the borrowing type one (positive-negative). This paper, therefore, proposes a method in which only the borrowing type unit cash-flow is eliminated in the series by converting total cash-flow using capital interest rate. Then, a unique IRR can be obtained and the profitability is evaluated. Thus, the paper extends the method of IRR so that it may help decision making in complicated cash-flow pattern observed in practice.

Analysis of Flood Resilience of the Stormwater Management Using SWMM Model (SWMM 모델을 이용한 우수 관리 홍수 탄력성 분석)

  • Hwang, Soonho;Kim, Jaekyoung;Kang, Junsuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.126-126
    • /
    • 2021
  • Stormwater reduction plays an important role in the safety and resilience to flooding in urban areas. Due to rapid climate change, the world is experiencing abnormal climate phenomena, and sudden floods and concentrated torrential rains are frequently occurring in urban basins and the amount of outflow due to stormwater increases. In addition, the damage caused by urban flooding and inundation due to extreme rainfall exceeding the events that occurred in the past increases. To solve this problem, water supply, drainage, and water supply for sustainable urban development, the water management paradigm is shifting from sewage maintenance to water circulation and water-sensitive cities. So, in this study, The purpose of this study is to examine measures to increase the resilience of urban ecosystem systems for urban excellence reduction by analyzing the effects of green infra structures and LID techniques and evaluating changes in resilience. In this study, for simulating and analysis of runoff for various stormwater patterns and LID applications, Storm Water Management Model (SWMM) was used.

  • PDF

Determinants of Fund Investment Flows: Asymmetry between Fund Inflows and Fund Outflows (펀드투자 자금흐름의 결정요인: 유입자금과 유출자금은 대칭적인가?)

  • Shin, Inseok;Cho, Sungbin
    • KDI Journal of Economic Policy
    • /
    • v.36 no.4
    • /
    • pp.33-69
    • /
    • 2014
  • We investigate determinants of fund investment flows using Korean equity investment funds. Unlike previous studies which analyzed net-flows (inflow minus outflow), we analyze fund investment inflows and outflows separately that should properly reflect investors' fund selection and redemption decision. We find similar effects of past return, fund age on net-flows to existing studies based on US market data. The analysis of determinants of inflows shows that inflows are related to past return, fund age and sales fee as net-flows. In contrast, outflows are found to behave quite differently from inflows. Apparently, asymmetry exists between fund investment inflows and outflows at the Korean fund selection market. Specifically, high past returns increase fund investment inflows while increase, rather than decrease, fund outflows. Moreover, 'convexity' is detected both in inflows and outflows: higher past returns accelerate outflows as well as inflows. Effects of sales fee also differ between inflows and outflows. In the 'affiliated' fund sample, sales fee is negatively related to inflows while positively related to outflows. In the 'unaffiliated' fund sample, sales fee is positively related to inflows, but no significant relationship exists with outflows. Empirical findings of this paper imply that the rational investor's fund selection view cannot provide a consistent explanation of the Korean fund selection market. In particular, the positive and convex relationship between past returns and fund outflows is inconsistent with the rational investor view. The fact that investor's fund investment appears to display 'disposition effect', which has been reported by studies of individual investors' stock investment behaviour suggests that the behavioral finance view should be a part of explanation for the Korean fund selection market. In addition, the strikingly different patterns between the 'affiliated' funds and the 'unaffiliated' funds, imply that brokers' incentive structure is another prevailing factor for fund investment flows.

  • PDF