• Title/Summary/Keyword: outer membrane vesicle (OMV)

Search Result 5, Processing Time 0.02 seconds

Isolation and characterization of the outer membrane vesicle (OMV) protein from Vibrio anguillarum O1 (Vibrio anguillarum O1이 생산하는 Outer Membrane Vesicle (OMV)의 분리 및 OMV 내의 단백질 특성)

  • Hong, Gyeong-Eun;Kim, Dong-Gyun;Min, Mun-Kyeong;Kong, In-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.123-125
    • /
    • 2007
  • Vibrio anguillarum is a gram-negative bacterium that causes vibriosis in approximately 80 different fish species. V. anguillarum produces several exotoxins are correlated with the pathogenesis of vibriosis. This study is focused on the composition of the outer membrane vesicle. Most of gram-negative bacteria produce outer membrane vesicle (OMV) during cell growth. OMV was formed from the outer membrane surface of cell and than released to extracellular environment. OMV consists of outer membrane lipids, outer membrane protein (OMP), LPS, and soluble periplasmic components. Also, they contain toxins, adhesions, and immunomodulatory. Many gram-negative bacteria were studied out forming OMV. In Vibrio sp., formation of OMV by electron microscopy has been reported from V. cholerae and V. parahaemolyticus. In present study, we isolated OMV from V. anguillarum and OMV protein was separated by SDS-PAGE. Magor band was sliced and analyzed by MALDI-TOF. The major protein band of 38kDa was identified as OmpU by MALDI-TOF MS analysis.

  • PDF

Bacterial Outer Membrane Vesicles as a Delivery System for Virulence Regulation

  • Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1343-1347
    • /
    • 2016
  • Outer membrane vesicles (OMVs) are spherical nanostructures that are ubiquitously shed from gram-negative bacteria both in vitro and in vivo. Recent findings revealed that OMVs, which contain diverse components derived from the parent bacterium, play an important role in communication with neighboring bacteria and the environment. Furthermore, nanoscale proteoliposomes decorated with pathogen-associated molecules attract considerable attention as a non-replicative carrier for vaccines and drug materials. This review introduces recent advances in OMV biogenesis and discusses the roles of OMVs in the context of bacterial communication and virulence regulation. It also describes the remarkable accomplishments in OMV engineering for diverse therapeutic applications.

Multi-Immunogenic Outer Membrane Vesicles Derived from a MsbB-Deficient Salmonella enterica Serovar Typhimurium Mutant

  • Lee, Sang-Rae;Kim, Sang-Hyun;Jeong, Kang-Jin;Kim, Keun-Su;Kim, Young-Hyun;Kim, Sung-Jin;Kim, E-Kyune;Kim, Jung-Woo;Chang, Kyu-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1271-1279
    • /
    • 2009
  • To develop low endotoxic and multi-immunogenic outer membrane vesicles (OMVs), a deletion mutant of the msbB gene in Salmonella enterica serovar Typhimurium (S. Typhimurium) was used as a source of low endotoxic OMV, and an expression vector of the canine parvovirus (CPV) VP2 epitope fused to the bacterial OmpA protein was constructed and transformed into the Salmonella ${\Delta}msbB$ mutant. In a lethality test, BALB/c mice injected intraperitoneally with the Salmonella ${\Delta}msbB$ mutant survived for 7 days, whereas mice injected intraperitoneally with the wild type survived for 3 days. Moreover, all mice inoculated orally with the ${\Delta}msbB$ mutant survived for 30 days, but 80% of mice inoculated orally with the wild type survived. The OmpA::CPV VP2 epitope fusion protein was expressed successfully and associated with the outer membrane and OMV fractions from the mutant S. Typhimurium transformed with the fusion protein-expressing vector. In immunogenicity tests, sera obtained from the mice immunized with either the Salmonella msbB mutant or its OMVs containing the OmpA::CPV VP2 epitope showed bactericidal activities against wild-type S. Typhimurium and contained specific antibodies to the CPV VP2 epitope. In the hemagglutination inhibition (HI) assay as a measurement of CPV-neutralizing activity in the immune sera, there was an 8-fold increase of HI titer in the OMV-immunized group compared with the control. These results suggested that the CPV-neutralizing antibody response was raised by immunization with OMV containing the OmpA::CPV VP2 epitope, as well as the protective immune response against S. Typhimurium in BALB/c mice.

Optimizing Conditions for the Production of Bacterial Extracellular Vesicles of Vibrio vulnificus and Analysis of the Inner Small RNA Compositions

  • Jeong Heon Park;Suji Song;Soyee Kim;Minjeong Kim;Kun-Soo Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.29-38
    • /
    • 2024
  • Chemical and physical elements affecting the production of bacterial extracellular vesicles (BEVs) of the human pathogen Vibrio vulnificus were quantitatively assessed to optimize the conditions for the BEV production by using the western blot quantification for an outer membrane porin OmpU and by fluorescent dye FM4-64. When cells were cultured at 37℃ in an enriched medium (2 × Luria Bertani; 2 × LB) in the presence of EDTA, they produced about 70% more BEVs. BEVs were purified from the cells cultured in the established optimal conditions by the density gradient ultracentrifugation. The dynamic light scattering measurement of the purified BEVs showed that the diameter of them ranged from approximately 25 nm to 161 nm. We hypothesized that there may be some features in nucleotide sequences specific to RNAs packaged in BEVs compared to those in cellular RNA molecules. We compared the nucleotide sequences and abundance of sRNAs between in the cellular fraction and in BEVs through next-generation sequencing (NGS). While no distinct feature was observed in the nucleotide sequences of sRNAs between two groups, the length of sRNA fragments from BEVs were significantly shorter than those in cytoplasm.

Effects of Extracts from Fusobacterium nucleatum on the Growth of Human Gingival Fibroblasts and HOS 941 Cells, and on the TNF-α Production of Mouse Splenocytes (Fusobacterium nucleatum 추출물이 사람 치은 섬유아세포와 HOS 941세포의 성장과 마우스 비장세포의 TNF-α 생성에 미치는 효과)

  • Oh, Hee-Myung;Song, Yo-Han;Shin, Keum-Back
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.4
    • /
    • pp.361-374
    • /
    • 1999
  • F. nucleatum is a gram-negative obligate anaerobe which is the principal and most frequent cause of gingival inflammation and is the predominant pathogen isolated in subsequent periodontal breakdown. It is also one of the most numerous bacteria found in subgingival plaque samples from healthy sites; its numbers are about 10-fold greater in plaque from periodontally diseased sites. The purpose of this study is to examine the effects of outer membrane(OM), outer membrane vesicle(OMV), and lipopolysaccharide(LPS) from F. nucleatum ATCC 25586 strain on the growth of human gingival fibroblasts and HOS 941 cells, and on the $TNF-{\alpha}$ production / $TNF-{\alpha}$ mRNA expression of mouse splenocytes. For the examination of cytotoxic effects, $TNF-{\alpha}$ production and $TNF-{\alpha}$ mRNA expression, the MTT assay, the ELISA and the RT-PCR were performed, respectively. All extracts of F. nucleatum tested were cytotoxic to both of human gingival fibroblasts and HOS 941 cells, and the significant difference of cytotoxic activity among the extracts was not observed. In the effects of these extracts on the $TNF-{\alpha}$ production / $TNF-{\alpha}$ mRNA expression of mouse splenocytes, all extracts of F. nucleatum tested also stimulated the $TNF-{\alpha}$ production / $TNF-{\alpha}$ mRNA expression, but the effects of the OM extracts on the $TNF-{\alpha}$ production / $TNF-{\alpha}$ mRNA expression were higher than those of the OMV and the LPS extracts. The pattern of the $TNF-{\alpha}$ mRNA expression was similar to that of the $TNF-{\alpha}$ production. These results indicate that F. nucleatum seems to contribute to the pathogenesis of periodontal diseases at least by its cytotoxicity, directly and its $TNF-{\alpha}$ production, indirectly.

  • PDF