• Title/Summary/Keyword: outer core

Search Result 307, Processing Time 0.036 seconds

The Development of Life Evaluation Program for LNG Storage Tank considering Fatigue and Durability (피로 및 내구성을 고려한 LNG 저장탱크의 수명평가 프로그램 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.39-45
    • /
    • 2017
  • The LNG storage tank as core facility of LNG industry is mainly composed of the inner tank of nikel 9% steel and the outer tank of prestressed concrete. To respond proactively increased risk of structure performance deterioration due to fatigue of the inner tank and durability reduction of the outer tank, life evaluation program for LNG storage tank is needed. In this study, life evaluation program for LNG storage tank was developed to assess fatigue of the inner tank and durability(carbonation and chloride attack) of the outer tank. By defining the main three scenarios in the inner tank, the fatigue life analysis is conducted from structural analysis and Miner's damage rule. Carbonation progress of the outer tank is predicted according to thickness of cover concrete by using carbon dioxide contents and data of penetration depth. To consider a variety of input conditions and a reliability in results of chloride attack, the evaluation of choride attack for the outer tank is constructed through Life-365 program of open source.

Frequency Vibrational Behavior Analysis of Double-Wall Carbon Nanotube Resonator (이중벽 탄소 나노튜브 공진기의 주파수 변동 특성 분석)

  • Kim, Jin-Tae;Lee, Jun-Ha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.169-174
    • /
    • 2011
  • For a double-walled carbon nanotube resonator with a short outer nanotube, the free edge of the short outer wall plays an important role in the vibration of the long inner nanotube. For a double-walled carbon nanotube resonator with a short inner nanotube, the short inner nanotube can be considered as a flexible core, thus, the fundamental frequency is influenced by its length. In this paper, we analysis frequency variation in ultrahigh frequency nanomechanical resonators based on double-walled carbon nanotubes with different wall length. This results will widely apply to the realization of frequency devices controlling the length of the inner or outer nanotube.

Enhancement of Downward-Facing Saturated Boiling Heat Transfer by the Cold Spray Technique

  • Sohag, Faruk A.;Beck, Faith R.;Mohanta, Lokanath;Cheung, Fan-Bill;Segall, Albert E.;Eden, Timothy J.;Potter, John K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.124-133
    • /
    • 2017
  • In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as "cold spray" that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

Influence of oil pipe corrosion defects on the sealing performance of annular BOP

  • Dong, Liangliang;Tang, Yuan;Wang, Liuyang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.337-344
    • /
    • 2022
  • Due to corrosion defects on the surface of the oil pipe, the sealing performance of the annular blowout preventer (BOP) decreases, and the leakage of toxic and harmful gases such as H2S and SO2 will threaten the safety of operators on the well. Therefore, this paper establishes the FE model for evaluating the sealing performance of BOP-oil pipe corrosion defects, which is based on the rubber large deformation theory and rubber core sealing mechanism, and designs the experiment of BOP sealing performance to verify the accuracy of the FE model. The sealing performance of BOP sealing oil pipe with corrosion defects is studied. The research results show that the sealing performance of BOP is more sensitive to the axial size of corrosion defects. With the increase of oil pipe outer diameter, the critical size of defects increases continuously. The sensitivity of radial and depth dimensions is low, When for 88.9 mm outer diameter oil pipe, the axial critical size of corrosion defect is 20 mm, the radial critical size is 16 mm and the critical depth is 2 mm. Fit the formula between the outer diameter of oil pipe and the piston increment. According to the formula, the operator can calculate the piston stroke increment required by the BOP to complete the sealing when the oil pipe is corroded.

Enthalpy Rise for Pressure Loss of Spacer Grids of Dual Coolant Fuel (이중냉각연료에서 지지격자의 압력손실에 대한 엔탈피 증가)

  • Chun, Kun-Ho;Chun, Tae-Hyun;Shin, Chang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3473-3478
    • /
    • 2007
  • A dual side cooling annular fuel having internal and external coolant channels has many advantages basically due to low fuel temperature and high DNBR margin, which can make a significant increase of core power density possible. So recently a 12x12 square annular fuel array was proposed for the fuel assembly to be reloaded without structural interference with operating reactors of OPR-1000s. Even through the inherent potential of the annular fuel on the high power density, it may be seriously eroded in the case of a severe unbalanced mass flux split to the internal and external channels in standpoint of DNB. Mass flux split is determined pressure drop characteristics between inner and outer channels. The spacer grids binding fuel array influence greatly the pressure drop in outer channels and the mass flux split. As an important factor of DNB behavior, the enthalpy differences at both channel exits were evaluated using the mass flux splits.

  • PDF

Chiral Mesophase Derived from Achiral Polymers with Banana-Shaped Mesogens and Their Model Compounds

  • Choi, E-Joon;Kim, Eun-Chul;Kwon, Myung-Hun;Zin, Wang-Cheol;Kim, Young-Chul;Paek, Sang-Hyon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.242-243
    • /
    • 2006
  • In this work, we report the synthesis and characterization of azomethineester polymers that consist of banana-shaped mesogen in their backbone. Two parts of the key structure of five-ring bent-core mesogen were modified by connecting different angle of central unit (Ar), and introducing lateral substituent into the outer ring (X). The synthetic details includes (1) placing the dioxydodecamethylene unit as a flexible spacer, (2) possessing 2,3- or 2,7-naphthylene, or 1,2-phenylene connection on the central unit, and (3) introducing fluorine or chlorine substituent (X = F or Cl) into the outer phenylene unit.

  • PDF

Synthesis and Mesomorphism of Polymers with Banana-Shaped Mesogens in the Main Chain

  • Choi, E-Joon;Zin, Wang-Cheol;Kim, Young-Chul;Paek, Sang-Hyon;Chien, Liang-Chy;Samulski, Edward T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.171-174
    • /
    • 2006
  • In this work, we report the synthesis and characterization of azomethine-ester polymers that consist of banana-shaped mesogen in their backbone. Two parts of the key structure of five-ring bent-core mesogen were modified by connecting different angle of central unit (Ar), and introducing lateral substituent into the outer ring (X). The synthetic details includes (1) placing the dioxydodecamethylene unit as a flexible spacer, (2) possessing 2,3- or 2,7-naphthylene, or 1,2-phenylene connection on the central unit, and (3) introducing fluorine or chlorine substituent (X = F or Cl) into the outer phenylene unit.

  • PDF

Structural Modification of Nanodiamond Induced by Ion Irradiation

  • Seok, Jae-Gwon;Im, Won-Cheol;Chae, Geun-Hwa;Song, Jong-Han;Lee, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.195.2-195.2
    • /
    • 2014
  • Nanodiamond (ND) is composed of inner diamond core and outer graphite shell. The size of ND used in this study was about 5 nm. The ND solution was dropped on silicon substrate and dried in air. Dried ND sample was purified by using annealing method in air. Then, 40 keV Fe ion was irradiated into the sample. The dose was varied from $1{\times}10^{14}$ to $1{\times}10^{16}ions/cm^2$. The post annealing was performed at 1073 K in the vacuum to recover diamond structure. The annealing at 873 K in air was performed to remove the outer graphite shell. The structure of ND was confirmed by X-ray diffraction (XRD) and Raman spectroscopy. We will present the detailed data and results in the conference.

  • PDF

X-ray observation of the shocked red supergiant wind of Cassiopeia A

  • Lee, Jae-Joon;Park, Sang-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.104.2-104.2
    • /
    • 2011
  • We study X-ray characteristics of shocked ambient gas of the Galactic core-collapse supernova remnant Cas A. Using 1 Msec observation with Chandra X-ray Observatory, we identify thermal emissions from the shocked ambient gas along the outer boundary of the remnant. Our results show that Cas A is expanding into a circumstellar wind with a wind density n ~ 1 $cm^{-3}$ at the current outer radius of the remnant (~ 3 pc). We suggest that the progenitor star of Cas A, which exploded as a Type~IIb SN, had an initial mass ~16 Msun, and have lost ~10 Msun as a RSG wind. We discuss the implications of our results for the mass loss of massive stars and the resulting supernova type.

  • PDF