• Title/Summary/Keyword: outdoor environments

Search Result 355, Processing Time 0.024 seconds

Assessment of Formaldehyde Concentration in Indoor and Outdoor Environments of Schools in Incheon (인천지역 일부 학교의 실내 및 대기 중 포름알데히드 농도 평가)

  • Jeung, Yeon-Hee;Choi, Sang-Jun
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.372-378
    • /
    • 2007
  • This study evaluated formaldehyde concentration in classrooms and on roofs at 4 elementary schools, 3 middle schools and 3 high schools in Incheon City. These schools were chosen based on their surrounding environments that included industrial site, landfill, railway, 8-lane road and harbor. Indoor concentration ranged between 4.65 and $56.25{\mu}g/m^3$, while that of outdoor concentration was $1.23{\sim}10.22{\mu}g/m^3$, both of which were below $100{\mu}g/m^3$, a formaldehyde criterion stipulated by the School Health Act. Indoor concentration was higher than outdoor concentration by $1.4{\sim}5.9$ times, and there was a positive correlation between indoor and outdoor formaldehyde concentrations (R=0.49). As for indoor concentration, multi-use practice rooms had an average 2.8 times higher than that of usual classrooms with a statistically significant difference (p<0.01). Indoor formaldehyde concentration had a positive correlation with the construction year (R=0.55). The school close to the industrial complex had the highest ambient formaldehyde concentration, followed by the one near a landfill. The formaldehyde concentration in school in the vicinity of the industrial complex was twice or more than that of the school located other site. In conclusion, this study suggests that it is crucial to consider surrounding environments in selecting school sites, as it can influence ambient air contamination, as well as using construction material that emit less formaldehyde, in order to protect the health of students, teachers and school staff.

A Study on the Evaluation of Outdoor Spaces of Nursing Homes in Seoul (서울양로시설의 옥외공간 평가에 관한 연구)

  • Lee, Joo-Young;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.221-229
    • /
    • 2014
  • In elderly housing facilities where are elderly living facilities, the importance of outdoor space for psychological healing and stability, health improvement and environmental improvement is increasing, since elderly people suffer from depression and are hostile to these facilities. This study aims to identify if outdoor spaces in elderly housing facilities in Seoul have environments appropriate for the elderly and to suggest problems and improvements. For achieving this purpose, nine elderly housing facilities in Seoul were chosen and a field survey was conducted targeting five facilities with outdoor spaces. Based on the previous studies, the concepts of elderly housing facility and outdoor space were organized. Then, a checklist was drawn up as a framework of analysis for evaluating the present state of outdoor spaces of elderly housing facilities and space planning, and improvements were explored. It was found that elderly housing facilities in Seoul had good connectivity and accessibility to the surrounding areas, but there were few supporting facilities, except for resting places. Also, the result of analysis of the present state showed that most elderly housing facilities were located in high lands and the safety of elderly people was being threatened while moving, due to the absence of handrails. In conclusion, it is considered that outdoor space of elderly housing facility should be planned in consideration of safety, affordance and cognition out of the standards of researcher's evaluation tool.

Analysis on the Thermal Comfort Aspect of a Locally-Cooled Room in Warm and Humid Environments : PPD-Based Evaluation of Human Responses (중온 고습 환경조건에서 부분적으로 냉방되는 실내의 열쾌적성에 대한 분석 : 인체반응에 대한 PPD 기준의 평가)

  • Kim, Bong-Hun;Seo, Seung-Rok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.41-59
    • /
    • 1998
  • Thermal comfort aspect of a locally-cooled target space in warm and humid environments(typically in the rainy summer season) was studied in view of PPD index. First. theoretical analyses were conducted to examine the effect of the governing parameters(such as air temperature, relative humidity and air velocity, etc.) using a computer model. Secondly, experimental investigations were also performed in a climatic room designed to simulate corresponding thermal conditions of outdoor environments. During the tests, temporal variation of PPD was recorded as functions of climatic variables(outdoor and indoor temperatures, relative humidity and air velocity) for the given human factors(metabolic heat generation and clothing). From both theoretical and experimental investigations, air temperature and air velocity were found to be the most dominant parameters affecting PPD of the target space. Results were summarized as: 1. Relative humidity of the locally-cooled target space tends to approach that of outdoor's as the space is subjected to an ON-OFF mode of cooling, since moisture potential of the two rooms reaches an equalized state as a result of moisture diffusion. 2. It was recognized that changes in relative humidity did not show any significance in view of thermal comfort as was reported in the previous studies, while variations of both temperature and air velocity caused relatively large changes in the degree of thermal comfort. 3. In-door environment should be evaluated in terms of PPD instead of relative humidity commonly recognized as an important climatic variable particularly in warm and humid environments.

  • PDF

A Study on the Planning of Outdoor Playground Space Open to the Community through the Participatory Design Method (사용자참여 디자인을 통한 열린 놀이터 만들기 - 서울 삼양초등학교 옥외공간을 중심으로 -)

  • Reigh, Young-Bum
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.12 no.3
    • /
    • pp.22-32
    • /
    • 2005
  • This paper is to propose a design possibility that incorporates participatory process and also to emphasize the participatory process applied to the planning of outdoor playground space open to the neighboring community. Community design based on the participation method can be understood as an attitude about a force for change in the creation and management of environments for people who are the major users of them. Planning for outdoor space is an integral part of school education and a vital component of child development. For the design of outdoor space of Samyang Elementary School it first needs to examine the current and emerging needs of students, teachers and parents as community residents through the participatory design method. A series of workshops and interviews are taken to identify dreams and ideal spaces of each group. An assessment of existing school spaces and design possibility of reprogrammed outdoor spaces are proposed to match the major demands of participants. Selected outdoor places are chosen and designed to accommodate options for various play settings and to make the school pleasant places where members of the neighborhood can gather for relaxation in restful surroundings.

Analysis of the Energy Consumption in Underfloor Air Distribution System depending on Outdoor Air Intake Rates (외기 도입에 따른 바닥급기 시스템의 에너지 사용량 분석)

  • Kim, Dong-Hee;Huh, Jung-Ho;Cho, Dong-Woo;Yu, Ki-Hyung;Yu, Ji-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.826-831
    • /
    • 2006
  • In this paper, we discussed the energy performance of underfloor air distribution(UFAD) and overhead air distribution system according to outdoor air intake rates in a office building. For this, the laboratory(S lab.) is selected for measuring the thermal environments of UFAD system and overhead system. Based on the measured data, the TRNSYS simulation is used to evaluate the energy performance of UFAD system and the overhead system according to outdoor air intake rates. By increasing outdoor air intake rates from required outdoor air intake rates(100CMH) to maximum air intake rates, the energy savings of UFAD system comparing with overhead system are varied $15%{\sim}25.6%$ in summer, $12.8%{\sim}19%$ in fall/spring and not varied in winter(8%). As results of simulations on stratification height and cooling set temperature, the lower the stratification height and the higher cooling set temperature, the larger cooling energy savings of UFAD comparing with overhead system according to outdoor air intake rates.

  • PDF

Outdoor Testing and Degradation of EVA and POE Encapsulated Photovoltaic Modules (옥외 관측을 통한 EVA, POE PV모듈의 열화 연구)

  • Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.847-852
    • /
    • 2016
  • Using both EVA and POE encapsulants, we fabricated polycrystalline Si PV modules and performed a set of reliability tests of PID, DH, TC, and Complex prior to outdoor installation. The power output with temperatures and insolation as well as I-V characteristics had been monitored under outdoor environments for 18 months. In the entire period, the total power of 3,576 kWh from POE PV modules was observed larger than 3,449 kWh from EVA PV modules by 3.5%. All the PV modules showed a 5.6~9.2% drop in the conversion efficiency. As for the solar power generation, the PV modules performed through PID, TC test revealed distinct difference in between EVA and POE for which the POE PV module produced more power by +11.4% and +6.6%, respectively, as measured in the 18th month. In addition, POE was proved to protect better the solar cells under PID influence.

Trend of Technology for Outdoor Security Robots based on Multimodal Sensors (멀티모달 센서 기반 실외 경비로봇 기술 개발 현황)

  • Chang, J.H.;Na, K.I.;Shin, H.C.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • With the development of artificial intelligence, many studies have focused on evaluating abnormal situations by using various sensors, as industries try to automate some of the surveillance and security tasks traditionally performed by humans. In particular, mobile robots using multimodal sensors are being used for pilot operations aimed at helping security robots cope with various outdoor situations. Multiagent systems, which combine fixed and mobile systems, can provide more efficient coverage (than that provided by other systems), but network bottlenecks resulting from increased data processing and communication are encountered. In this report, we will examine recent trends in object recognition and abnormal-situation determination in various changing outdoor security robot environments, and describe an outdoor security robot platform that operates as a multiagent equipped with a multimodal sensor.

A Study on Sensitivity to Temperature of Electricity Consumption in School Buildings (학교 건축물 전력소비의 기온감응도에 관한 연구)

  • Kim, Tae-Woo;Lee, Kang-Guk;Kim, Ho-Soon;Hong, Won-Hwa
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.5
    • /
    • pp.13-21
    • /
    • 2011
  • In case of school buildings, energy consumption has been noticeably on the increase, along with the changes in outdoor temperature triggered by the improvement in national economic development and educational environments. Research on the characteristics of energy consumption in school buildings influenced by the changes in outdoor temperature is considered very significant in social aspects in that it will be fundamental to the suggestion of the alternatives, such as saving energy consumption in construction buildings and control of emitting carbon dioxide. In this regard, this study examined sensitivity to temperature of power consumption in school buildings, based on the changes of outdoor temperature for the past five years in the target buildings of elementary, middle and high schools and the amount of energy consumption. From the results, it has been believed that this study was very significant in terms of figuring out a quantitative, optimum level of energy consumption, maintenance of pleasant environments and functions, and the necessity of effective energy use and management in school buildings.

  • PDF

The impact of outdoor environment on residential noise level satisfaction: GIS-based Analysis

  • Choi, Ga-Yoon;Jung, Hye-Jin;Lee, Jae Seung
    • Journal of KIBIM
    • /
    • v.11 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • Urban residents in crowded complexes are making increasing civil complaints about noise and demanding pleasant and comfortable residential environments. Because noise is one of the most important factors related to urban residents' dissatisfaction with their living environments, the present study investigates the direct and indirect effects of noise-related outdoor environmental factors on residential level satisfaction, using noise level data from 29 noise-measuring stations in Seoul. From 62 multi-family apartment complexes near these stations, the authors collected GIS-based environmental attribute data, as well as survey data including the residents' personal characteristics and indicators designed to measure latent psychological characteristics: noise sensitivity and residential noise level satisfaction. This study then utilized structural equation models to analyze the direct variables influencing the latent variables of noise sensitivity and residential noise level satisfaction, as well as the complex relationships among all variables. The result showed that residents who are exposed to less noise, possibly due to living in apartments facing relatively quiet roads, protected by soundproof walls, or surrounded by densely planted trees, tend to be less noise sensitive, which makes them more satisfied with the ambient noise level. Therefore, critical outdoor environmental variables can be used to reduce noise sensitivity and improve residential noise level satisfaction.

Development of Autonomous Navigation Robot in Outdoor Road Environments (실외 도로 환경에서의 자율주행 로봇 개발)

  • Roh, Chi-Won;Kang, Yeon-Sik;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.293-299
    • /
    • 2009
  • This paper discusses an autonomous navigation system for urban environments. For the localization of the robot, EKF (Extended Kalman Filter) algorithm is used with odometry, angle sensor, and DGPS (Differential Global Positioning System) measurement. Especially in an urban environment, DGPS is often blocked by buildings and trees and the resulting inaccurate positioning prevents the robot from safe and reliable navigation. In addition to the global information from DGPS, the local information of the curb on the roadway is used to track a route when the global DGPS information is inaccurate. For this purpose, curb detection algorithm is developed and implemented in the developed navigation algorithm. Four different types of navigation strategies are developed and they are switched to adapt to different localization conditions according to the availability of DGPS and the existence of the curbs on the roadway. The experimental results show that the designed switching strategy improves the navigation performance adapting to the environment conditions.