• 제목/요약/키워드: outdoor air quality

검색결과 205건 처리시간 0.02초

신축공동주택의 기밀성능 실측에 관한 연구 (The Field Measurement of Airtightness in the Apartment Buildings)

  • 박원석;윤재옥
    • KIEAE Journal
    • /
    • 제3권3호
    • /
    • pp.43-50
    • /
    • 2003
  • Nowdays the apartment is a main type of modernized residential buildings. According to the improvement of construction techniques and functions of windows and doors, recent apartments are enhanced air tightness of windows, doors and building envelopes. As Infiltration is decreased and natural ventilation is reduced, energy could be saved in winter. However, indoor air quality is bad. The air Infiltration of a building could be enlarged by physical actions, such as building designs, constructions and reduction of air tightness which is caused by aging. This research analyzes and measures with KNS-4000P (Sapporo air tightness measurement) the air tightness of the high rise apartments which is recently constructed and not occupied yet. With depressurization method, the KNS-4000 installed on the window and the indoor air-leakage was measured. At that time, Air come out from the edge of the windows and doors because of the pressure differences between indoor and outdoor. We measure the amount of the air as effective air leakage areas. This method of depressurization takes less time to measure than other methods and is less affected from other conditions. We measured infiltration of total 56 household, 29 households S apartment (total floor area : $64.42m^2$) in Balan and 29 households D apartment(total floor area : $78.21m^2$) in Chonan. As a result of the field measurements at October 2003, normalized leakage area of D apartment in Cheonan was $2.05cm^2/m^2{\sim}3.49cm^2/m^2$ (average: $2.77cm^2/m^2$) and normalized leakage area of S apartment in Balan is $1.23cm^2/m^2{\sim}1.68cm^2/m^2$ (average: $1.5cm^2/m^2$).

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • 제15권1호
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

Paint booth volatile organic compounds emissions in an urban auto-repair center

  • Cho, Minkyu;Kim, Ki-Hyun;Szulejko, Jan E.;Dutta, Tanushree;Jo, Sang-Hee;Lee, Min-Hee;Lee, Sang-hun
    • 분석과학
    • /
    • 제30권6호
    • /
    • pp.329-337
    • /
    • 2017
  • A major concern regarding most auto-repair shops in residential areas is the emission of odorous volatile organic compounds (VOCs) into the local atmosphere, especially during painting operations. VOCs contribute to poor local air quality and are responsible for the perceived odor and discomfort experienced by local residents. Sixteen major VOCs (6 aromatic hydrocarbons and 10 aliphatic carbonyl compounds) were selected as potential target compounds. The site was an auto-repair shop located in a central region of Seoul, South Korea, where the air quality of the site has been a subject of residents' complaints. The sampling points were as follows: 1) in the painting booth with new (NB) or old (OB) removal system, (2) in the exhaust duct after new (ND) or old (OD) odor removal filter, and (3) 2 m below the discharge vent (4 m above the ground) (outdoor air, OA). Each sample was coded: (1) before painting (BP), (2) during painting (DP), and (3) after painting (AP). The toluene level in the duct with the new removal filter during painting (ND-DP) was 1.5 ppm (v/v), while it was 3.8 ppm (v/v) in the right duct with an old removal filter during painting (OD-DP). Accordingly, the effect of filter replacement was reflected by differences in VOC levels. Therefore, accurate monitoring of odorous VOCs is an important step to reduce odor nuisance from local sources.

서울시 지하철 2호선 본선구간의 입자상물질 농도 특성 및 미세분진의 오염지도 개발 (Characterizing Par ticle Matter on the Main Section of the Seoul Subway Line-2 and Developing Fine Particle Pollution Map)

  • 이은선;박민빈;이태정;김신도;박덕신;김동술
    • 한국대기환경학회지
    • /
    • 제32권2호
    • /
    • pp.216-232
    • /
    • 2016
  • In present, the Seoul City is undergoing traffic congestion problems caused by rapid urbanization and population growth. Thus the City government has reorganized the mass transportation system since 2004 and the subway has become a very important means for public transit. Since the subway system is typically a closed environment, the indoor air quality issues have often raised by the public. Especially since a huge amount of PM (particulate matter) is emitted from ground tunnels passing through the subway train, it is now necessary to assess the characteristics and behaviors of fine PM inside the tunnel. In this study, the concentration patterns of $PM_1$, $PM_{2.5}$, and $PM_{10}$ in the Seoul subway line-2 were analyzed by real-time measurement during winter (Jan 13, 2015) and summer (Aug 7, 2015). The line-2 consisting of 51 stations is the most busy circular line in Seoul having the railway of 60.2 km length. The the one-day average $PM_{10}$ concentrations were $148{\mu}g/m^3$ in winter and $66.3{\mu}g/m^3$ in summer and $PM_{2.5}$ concentrations were $118{\mu}g/m^3$ and $58.5{\mu}g/m^3$, respectively. The $PM_{2.5}/PM_{10}$ ratio in the underground tunnel was lower than the outdoor ratio and also the ratio in summer is higher than in winter. Further the study examined structural types of underground subsections to explain the patterns of elevated PM concentrations in the line-2. The subsections showing high PM concentration have longer track, shorter curvature radius, and farther from the outdoor stations. We also estimated the outdoor PM concentrations near each station by a spatial statistical analysis using the $PM_{10}$ data obtained from the 40 Seoul Monitoring Sites, and further we calculated $PM_{2.5}/PM_{10}$ and $PM_1/PM_{10}$ mass ratios near the outdoor subway stations by using our observed outdoor $PM_1$, $PM_{2.5}$, and $PM_{10}$ data. Finally, we could develop pollution maps for outdoor $PM_1$ and $PM_{2.5}$ near the line-2 by using the kriging method in spatial analysis. This methodology may help to utilize existing $PM_{10}$ database when managing and control fine particle problems in Korea.

실내외 환경과 사용자의 행동을 고려한 스마트 홈 서비스 시스템 (Smart Home Service System Considering Indoor and Outdoor Environment and User Behavior)

  • 김재정;김창복
    • 한국항행학회논문지
    • /
    • 제23권5호
    • /
    • pp.473-480
    • /
    • 2019
  • 스마트 홈은 가정의 가전제품, 에너지 소비 장치, 보안기기 등 모든 사물을 통신망으로 연결해 모니터링 및 제어할 수 있는 기술이다. 스마트 홈은 자동제어 뿐 아니라 상황과 사용자의 취향을 학습하고, 이에 맞는 결과를 스스로 제공하는 방향으로 발전하고 있다. 본 논문은 사용자의 행동을 감지하여 사용자의 특성에 맞는 쾌적한 실내 환경 제어 서비스를 할 수 있는 모델을 제안하였다. 전체 시스템 구성은 센서와 와이파이를 탑재한 ESP8266, 실시간 데이터베이스인 firebase, 스마트 폰 어플로 구성된다. 본 모델은 사용자가 가전기기 작동시의 학습모드, 학습 결과를 통한 학습 제어, 실내와 실외 센서의 값을 이용한 자동 환기 등의 기능으로 구분된다. 학습은 에어컨, 가습기, 공기청정지 등 가전기기 제어시의 온도와 습도에 대한 이동 평균을 이용하였다. 본 시스템은 데이터베이스에 지속적으로 수집된 데이터를 다양한 기계학습과 딥 러닝을 통해 사용자의 특성을 분석하고 예측하여 보다 고 품질의 서비스를 제공할 수 있다.

서울시 지하철 2호선의 가을철 객실 PM2.5 농도의 특성 (Characteristics of In-cabin PM2.5 Concentration in Seoul Metro Line Number 2 in Autumn)

  • 신혜린;정현희;이기영
    • 한국환경보건학회지
    • /
    • 제45권2호
    • /
    • pp.186-191
    • /
    • 2019
  • Objectives: Subway is one of the most common transportation modes in Seoul, Korea. The objectives of this study were to determine characteristics of in-cabin $PM_{2.5}$ concentration in Seoul Metro Line Number 2 and to identify factors of the $PM_{2.5}$ concentration. Methods: In-cabin $PM_{2.5}$ concentrations in Seoul Metro Line Number 2 were measured using real-time monitors and the factors affecting $PM_{2.5}$ concentration in cabin were observed. Linear regression analysis of in-cabin $PM_{2.5}$ concentration and indoor/outdoor (I/O) ratio were performed. Results: In-cabin $PM_{2.5}$ concentration was associated with the in-cabin $PM_{2.5}$ concentration in previous station. In-cabin $PM_{2.5}$ concentration was correlated with ambient $PM_{2.5}$ concentration and associated with underground station with control of the in-cabin $PM_{2.5}$ concentration in previous station. I/O ratio increased as the number of passengers increased and when passing through the underground station with control of I/O ratio in previous station. Conclusion: In-cabin $PM_{2.5}$ concentration was affected by ambient $PM_{2.5}$ concentration. Therefore, management of in-cabin $PM_{2.5}$ concentrations should be based on outdoor air quality.

실공간 사용 공기조화기용 열교환기의 공기측 파울링 특성 예측 (Prediction of Characteristics for the Air-side Particulate Fouling in Finned-Tube Heat Exchangers of Air Conditioners used in the Field)

  • 안영철;정성학;황유진;이창건;김두현;정성일;이재근
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.563-568
    • /
    • 2007
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performances of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. An empirical modeling equation has been derived from the experimental results using accelerated tests and it showed good predictions of the fouling characteristics of the slitted finned tube heat exchangers. However the modeling equation predicts only the fouling characteristics of new heat exchangers and it can not predicts fouling characteristics obtained from actual field data which contains the effect of hydrophilicity deterioration. Therefore an modified modeling equation is proposed and it shows good predictions of the actual fouling characteristics of finned-tube heat exchangers.

이산화질소 다중측정을 이용한 실내공기의 환기량 밀 발생량 추정에 관한 연구 (A Study on Estimation on Air Exchange Rate and Source Strength in Indoor Air Using Multiple Measurements of Nitrogen Dioxide)

  • 양원호;이기영;정문호;정문식
    • 한국산업보건학회지
    • /
    • 제10권1호
    • /
    • pp.160-169
    • /
    • 2000
  • Daily indoor and outdoor nitrogen dioxide ($NO_2$) concentration for 30 days were measured in 28 houses with questionnaire of housing characteristics in Brisbane, Australia. Using mass balance equation and regression analysis, penetration factors and source strength factors were calculated. The penetration factors of 27 houses except one house were between zero and 1, though penetration factor should be between zero and 1 by means of mass balance equation. Relationship between indoor and outdoor concentrations in each 27 house was calculated using regression analysis. According to the obtained linear regression equation, the slope means penetration factor and the intercept means source strength factor. Calculated mean and standard deviation of coefficients of determination ($R^2$) in electric and gas range houses were $0.70{\pm}0.13$ and $0.57{\pm}0.21$, respectively. The source strength factors were more than zero in 27 houses. Mean and standard deviation of slopes in electric and gas range houses were $0.65{\pm}0.18$ and $0.56{\pm}0.12$, respectively. Mean and standard deviation of intercepts in electric and gas range houses were $1.49{\pm}1.25$ and $5.77{\pm}3.55$, respectively. Air exchange rate and source strength were calculated from penetration factor and source strength factor, respectively. Geometric mean and standard deviation of calculated air exchange rates in 27 houses were $1.1/hr{\pm}1.5$. Presence of gas range was the most significant factor contributing to indoor $NO_2$ level in house characteristics (p=0.003). In gas range houses, source strengths ranged from 4.1 to $33.1cm^3/hr{\cdot}m^3$ with a mean $12.7cm^3/hr{\cdot}m^3$ and a standard deviation 9.8. The source strengths of gas range houses were significantly different from those of electric range houses by t-test (p<0.001)

  • PDF

서울.경기 일부지역 다중이용시설실내공기 중 미세먼지와 미세먼지 중 내독소의 농도 (Indoor Air Concentration of Particulate Matter and Endotoxin in Public Facilities)

  • 전병학;황유경;김형아;이세훈;안규동;허용
    • 한국산업보건학회지
    • /
    • 제18권4호
    • /
    • pp.262-270
    • /
    • 2008
  • This study was conducted to measure concentrations of particulate matter ($PM_{10}$, $PM_{2.5}$) and endotoxin in thirty public facilities (7 elderly-care facilities, 4 hypermarkets, 4 university hospitals, 7 child-care facilities, 4 subway stations and 4 bus terminals) from September 2004 to February 2007 in Seoul and Gyeonggi-do province. $PM_{10}$ or $PM_{2.5}$ was measured with glass fiber filter and mini volume air sampler for 6 to 8 hours in indoor and outdoor of the facilities and expressed as ${\mu}g/m^3$. After weighing the filter, endotoxin was analyzed by Limulus Ameobocyte Lysate method ($EU/m^3$). $PM_{10}$ in indoor air was higher (GM and GSD was 78.00 and $1.92\;{\mu}g/m^3$, respectively) than the outdoor air (GM and GSD was 60.70 and $2.23\;{\mu}g/m^3$, respectively, I/O=1.28). All measurements was not exceeded the national maintenance standard. Elderly-care and child-care facilities showed relatively higher concentrations ($83.27\;{\mu}g/m^3$ and $81.75\;{\mu}g/m^3$; I/O=2.01 and 1.19, respectively) than hypermarkets or university hospitals. The highest PM2.5 was seen in child-care facilities ($62.15\;{\mu}g/m^3$, I/O=2.42). The I/O of the endotoxin in the PM10 and the $PM_{2.5}$ was exceeded 1.0 (1.37 and 1.57, respectively). Indoor $PM_{10}$ was affected by user/day and humidity, and endotoxin in the PM10 was affected by temperature. In conclusion, elderly- and child-care facilities are high priority facilities to be improved indoor air quality.

일개 실내수영장의 공기 중 염소 및 트리할로메탄의 노출평가 및 환기 효율 평가 (Assessment for Inhalation Exposure to Trihalomethanes (THMs) and Chroline and Efficiency of Ventilation for an Indoor Swimming Pool)

  • 박해동;박현희;신정아;김태호
    • 한국환경보건학회지
    • /
    • 제36권5호
    • /
    • pp.402-410
    • /
    • 2010
  • The objectives of this study were to evaluate the air quality surrounding an indoor swimming pool, to estimate the cancer risk based on the airborne exposure to trihalomethanes (THMs), and to examine the ventilation efficiency by Computational Fluid Dynamics (CFD). Chlorine and THMs were measured poolside, and in the staff room and reception area. The indoor swimming pool was modeled using the Airpak program, with ventilation drawings and actual survey data. Temperature, flow and mean age of the air were analyzed. Levels of chlorine poolside, and in the staff room, and reception area were $203\;{\mu}g/m^3$, $5\;{\mu}g/m^3$, and $10\;{\mu}g/m^3$, respectively. Chloroform was the dominant THM in all sampling sites and mean concentrations were $16.30\;{\mu}g/m^3$, $0.51\;{\mu}g/m^3$, and $0.06\;{\mu}g/m^3$ poolside, in the staff room and reception area, respectively. Bromodichloromethane and Dibromochloromethane levels were respectively estimated as $10.3\;{\mu}g/m^3$ and $1.7\;{\mu}g/m^3$ poolside, $1.3\;{\mu}g/m^3$ and $0.1\;{\mu}g/m^3$ in the staff room, and were not detected in the reception area. The cancer risks from inhalation exposure to THMs were estimated between $3.37{\times}10^{-7}$ and $1.84{\times}10^{-5}$. A short circulation phenomenon was observed from the supply air vents to the exhaust air vents located in the ceiling. A high temperature layer was formed within one meter of the ceiling, and a low temperature layer was formed under this layer due to the low velocity and high temperature of the supply air, and the improper locations of the supply air vents and exhaust air vents. The stagnation was evident at the above adult pool and the mean age of the air was 22 minutes. Disinfection by-products in the indoor swimming pool were present in higher concentrations than in the outdoor air. In order to increase the removal of pollutants, adjustment was required of the supply air volume and the supply/exhaust position.