• Title/Summary/Keyword: other cell interference

Search Result 126, Processing Time 0.029 seconds

An Adaptive Cell Selection Scheme for Ultra Dense Heterogeneous Mobile Communication Networks (초밀집 이종 이동 통신망을 위한 적응형 셀 선택 기법)

  • Jo, Jung-Yeon;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1307-1312
    • /
    • 2015
  • As smart-phones become popular, mobile data traffic has been dramatically increasing and intensive researches on the next-generation mobile communication network is in progress to meet the increasing demand for mobile data traffic. In particular, heterogeneous network (HetNet) is attracting much interest because it can significantly enhance the network capacity by increasing the spatial reuse with macro and small cells. In the HetNet, we have several problems such as load imbalance and interference because of the difference in transmit power between macro and small cells and cell range expansion (CRE) can mitigate the problems. In this paper, we propose a new cell selection scheme with adaptive cell range expansion bias (CREB) for ultra dense HetNet and we analyze the performance of the proposed scheme in terms of average cell transmission rate through system-level simulations and compare it with those of other schemes.

A New Cell Selection Scheme with Adaptive Bias for Ultra Dense Heterogeneous Mobile Communication Networks (초밀집 이종 이동 통신망을 위한 적응형 편향치를 활용한 새로운 셀 선택 기법)

  • Jo, Jung-Yeon;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.63-66
    • /
    • 2015
  • As smart-phones become popular, mobile data traffic has been dramatically increasing and intensive researches on the next-generation mobile communication network is in progress to meet the increasing demand for mobile data traffic. In particular, heterogeneous network (HetNet) is attracting much interest because it can significantly enhance the network capacity by increasing the spatial resue with macro and small cells. In the HetNet, we have several problems such as load imbalance and interference because of the difference in transmit power between macro and small cells and cell range expansion (CRE) can mitigate the problems. In this paper, we propose a new cell selection scheme with adaptive cell range expansion bias (CREB) for ultra dense HetNet and we analyze the performance of the proposed scheme in terms of average cell transmission rate through system-level simulations and compare it with those of other schemes.

  • PDF

Enhanced WMAN System based on Region and Time Partitioning D-TDD OFDM Architecture (영역/시간 세분화 D-TDD OFDM 구조에 기반한 새로운 WMAN 시스템 구조 설계)

  • Kim, Mee-Ran;Cheong, Hee-Jeong;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.68-77
    • /
    • 2006
  • In accommodating the asymmetric traffic for future wireless multimedia services, the dynamic time division duplexing (D-TDD) scheme is considered as one of the key solutions. With the D-TDD mode, however, the inter-BS and inter-MS interference is inevitable during the cross time slot (CTS) period, and this interference seriously degrades the system performance. To mitigate such interference, we propose a region and time partitioning D-TDD architecture for OFDM systems. Each time slot in the CTS period is split into several minislots, and then each cell is divided into as many regions as the number of minislots per time slot. We then assign the minislots only to the users in its predefined corresponding region. On top of such architecture which inherently separates the interfering entities farther from each other, we design a robust time slot allocation scheme so that the inter-cell interference can be minimized. By the computer simulation, it has been verified that the proposed scheme outperforms the conventional time slot allocation methods in both the outage probability and the bandwidth efficiency.

Joint Cell Grouping and User Association Scheme for Clustered Heterogeneous Cellular Networks (클러스터 이기종 셀룰러 네트워크를 위한 합동 셀 그룹핑 및 사용자 접속 기법)

  • Park, Jin-Bae;Lee, Hyung Yeol;Choi, Uri;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.520-527
    • /
    • 2013
  • In this paper, a joint cell grouping and user association technique proposed for a semi-dynamic grouped network MIMO in a clustered heterogeneous cellular network (HCN). With the conventional macro BSs, small cells are being overlaid to increase a spectral efficiency per area and these small cells are expected to be concentrated to support exponentially increasing data traffic in hot spot areas. The main culprits of performance degradation in the clustered HCN are interference and load imbalance. The proposed scheme jointly handles them to maximize a proportional-fair metric. It is shown that the proposed technique can largely improve user average rate and proportional fairness among users than any other conventional schemes in the clustered HCN.

MADF: Mobile-Assisted Data Forwarding for Wireless Data Networks

  • Xiaoxin;Gary, Shueng-Han;Biswanath;Bharat
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.216-225
    • /
    • 2004
  • In a cellular network, if there are too many data users in a cell, data may suffer long delay, and system's quality-of-service (QoS) will degrade. Some traditional schemes such as dynamic channel-allocation scheme (DCA) will assign more channels to hot (or overloaded) cells through a central control system (CC) and the throughput increase will be upper bounded by the number of new channels assigned to the cell. In mobile-assisted data forwarding (MADF), we add an ad-hoc overlay to the fixed cellular infrastructure and special channels-called forwarding channels- are used to connect mobile units in a hot cell and its surrounding cold cells without going through the hot cell's base station. Thus, mobile units in a hot cell can forward data to other cold cells to achieve load balancing. Most of the forwarding-channel management work in MADF is done by mobile units themselves in order to relieve the load from the CC. The traffic increase in a certain cell will not be upper bounded by the number of forwarding channels. It can be more if the users in hot cell are significantly far away from one another and these users can use the same forwarding channels to forward data to different cold neighboring cells without interference. We find that, in a system using MADF, under a certain delay requirement, the throughput in a certain cell or for the whole net-work can be greatly improved.

Resource Allocation Scheme for D2D Communications in Multi-Cell Environments (다중 셀 환경에서 단말 간 직접 통신을 위한 자원 할당 방식)

  • Oh, Sung-Min;Lee, Changhee;Yun, Miyoung;Shin, Jaesheung;Park, Ae-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.601-609
    • /
    • 2014
  • This paper proposes a resource allocation scheme suitable for D2D communications in multi-cell environment. In order to solve the inter-cell interference, the proposed scheme allocates the pre-assigned resource group and shares the information with neighbor cells. This paper also proposes a power control scheme for D2D communication to enhance the cell throughput. By the simulation results, the average SINR of the cellular uplink and D2D communication link are mostly higher than 10 dB when the proposed scheme is applied. On the other hand, with the inter-cell non-coordinated resource allocation scheme, the average SINR of the D2D communication link are decreased by 0 dB. In addition, the proposed scheme can enhance the cell throughput up to 8 % compared with the inter-cell non-coordinated resource allocation scheme.

RNAi and miRNA in Viral Infections and Cancers

  • Mollaie, Hamid Reza;Monavari, Seyed Hamid Reza;Arabzadeh, Seyed Ali Mohammad;Shamsi-Shahrabadi, Mahmoud;Fazlalipour, Mehdi;Afshar, Reza Malekpour
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7045-7056
    • /
    • 2013
  • Since the first report of RNA interference (RNAi) less than a decade ago, this type of molecular intervention has been introduced to repress gene expression in vitro and also for in vivo studies in mammals. Understanding the mechanisms of action of synthetic small interfering RNAs (siRNAs) underlies use as therapeutic agents in the areas of cancer and viral infection. Recent studies have also promoted different theories about cell-specific targeting of siRNAs. Design and delivery strategies for successful treatment of human diseases are becomingmore established and relationships between miRNA and RNAi pathways have been revealed as virus-host cell interactions. Although both are well conserved in plants, invertebrates and mammals, there is also variabilityand a more complete understanding of differences will be needed for optimal application. RNA interference (RNAi) is rapid, cheap and selective in complex biological systems and has created new insight sin fields of cancer research, genetic disorders, virology and drug design. Our knowledge about the role of miRNAs and siRNAs pathways in virus-host cell interactions in virus infected cells is incomplete. There are different viral diseases but few antiviral drugs are available. For example, acyclovir for herpes viruses, alpha-interferon for hepatitis C and B viruses and anti-retroviral for HIV are accessible. Also cancer is obviously an important target for siRNA-based therapies, but the main problem in cancer therapy is targeting metastatic cells which spread from the original tumor. There are also other possible reservations and problems that might delay or even hinder siRNA-based therapies for the treatment of certain conditions; however, this remains the most promising approach for a wide range of diseases. Clearly, more studies must be done to allow efficient delivery and better understanding of unwanted side effects of siRNA-based therapies. In this review miRNA and RNAi biology, experimental design, anti-viral and anti-cancer effects are discussed.

Unified Radio Resource Management for Hybrid Division Duplex System (Hybrid Division Duplex 시스템을 위한 통합 무선 자원관리 기법)

  • Kim, Pil-Geun;Kang, Chang-Gu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1076-1084
    • /
    • 2006
  • In this paper, we first review a concept of hybrid division duplexing (HDD) scheme, which has been proposed as a new type of duplexing scheme useful for a next generation mobile communication system and its implementation issues, including the unified radio resource management for HDD scheme. The HDD scheme maintains the advantages of both TDD and FDD at the same time while providing a useful structure to control the inter-cell interference, caused by an asymmetric traffic load of multimedia services over uplink and downlink in the TDD scheme. Employing two frequency bands, one for TDD scheme and the other for FDD scheme, uplink is operating under the TDD scheme only, while downlink is operating under the TDD or FDD scheme, depending on the location of mobile station. In the HDD scheme, therefore, it must determine a type of duplexing scheme to employ in the downlink and futhermore, a ratio of uplink and downlink duration to meet a given traffic load of asymmetric service, which requires some unified radio resource management for handling the subsequent inter-cell interference. In this paper, we propose a distributed adaptive control approach as a means of unified radio resource management for a HDD system that maximizes the overall system efficiency by fully utilizing the resource in TDD band, while minimizing the inter-cell interference.

A band Segmentation Scheme for Frequency Sharing with Terrestrial Service in Multi-beam Satellite Systems (멀티빔 위성 시스템에서 대역 분할 기법을 이용한 지상망과의 주파수 간섭 경감 연구)

  • Oh, Dae-Sub;Kim, Soo-Young;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.891-897
    • /
    • 2009
  • In the satellite communications, the frequency sharing with other services is important because the service coverage is generally very wide and overlaps with those of other wireless services. This paper introduces a new technique to mitigate interference into the terrestrial stations from the Earth station in the same frequency band by means of band segmentations which are portions of the overall operation frequency band divided by frequency reuse factor. We consider a multi-beam satellite system, where frequency bands are reused in each satellite cell. The terrestrial stations use band segmentations of adjacent satellite cells, and this may decrease the interferences. By this way, the terrestrial and satellite systems can share the same frequency bands efficiently. The simulation is performed at frequency reuse factors, seven and three. The simulation results show that the proposed method can highly reduce the interference level to -168 dBW or -163 dBW depending on the considered frequency reuse factor from -117 dBW at the 90% link availability.

Impact of Co-transfection with Livin and Survivin shRNA Expression Vectors on Biological Behavior of HepG2 Cells

  • Xu, Wei;Chang, Hong;Qin, Cheng-Kun;Zhai, Yun-Peng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5467-5472
    • /
    • 2013
  • Objective: To construct short hairpin RNA (shRNA) eukaryotic expression vectors targeting Livin and Survivin genes, and to explore the impact of co-transfection of Livin and Survivin shRNA expression vectors on the biological behavior of HepG2 cells. Methods: shRNA eukaryotic expression vectors pSD11-Livin and pSD11-Survivin were designed and constructed then transfected into HepG2 cells separately or in combination. mRNA and protein expression in transfected cells was assessed by quantitative fluorescence PCR and Western blotting, respectively. Cell proliferation was measured by MTT assay and cell apoptosis by TUNEL assay. Results: The Livin and Survivin shRNA eukaryotic expression vectors were successfully constructed and transfected into HepG2 cells. The relative mRNA expression levels of Livin and Survivin in HepG2 cells co-transfected with pSD11-Livin and pSD11-Survivin were $0.12{\pm}0.02$ and $0.33{\pm}0.13$, respectively, which was significantly lower than levels in cells transfected with either pSD11-Livin or pSD11-Survivin (P<0.05). The relative protein expression levels of Livin and Survivin in the co-transfected cells were also significantly decreased compared to single-transfection (P<0.05). The inhibition rate of cell growth in the co-transfection group was higher than that in the single-transfection groups at 48 h, 60 h, or 72 h after transfection (P<0.01). The apoptotic rate increased to the greatest extent in the co-transfection group relative to any other group (P<0.05). Conclusions: Co-transfection with pSD11-Livin and pSD11-Survivin was more efficient than transfection with either vector alone in reducing the mRNA and protein expression of Livin and Survivin genes in HepG2 cells. Co-transfection also inhibited the proliferation of transfected cells more than the other groups, and induced cellular apoptosis more effectively.