• Title/Summary/Keyword: osteoblasts differentiation

Search Result 227, Processing Time 0.026 seconds

Effects of Asparagus cochinchinensis (Lour.) Merr. on the Stimulation of Osteoblast Differentiation and Inhibition of Osteoclast Generation (천문동 추출물에 의한 조골세포 분화 촉진 및 파골세포 생성 억제효과)

  • Lee, Seung-Youn;Kim, Si-Na;Kim, Jong-Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.16-19
    • /
    • 2008
  • Bone mass in adults decreases with age because of the imbalance between the rate of bone formation and resorption. We performed this study to investigate whether Asparagus cochinchinensis (Lour.) Merr. (ACAE) plays a role in osteoblasts differentiation and osteoclasts formation. Ethanol extract of ACAE showed increase in the differentiation and alkaline phosphatase activity of osteoblasts. Also, it decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (OCLs) and TRAP activity. Therefore, ACAE has the potential to prevent bone-related diseases such as osteoporosis by increasing the differentiation of osteoblasts and reducing both the number and activity of osteoclasts.

BK Channel Deficiency in Osteoblasts Reduces Bone Formation via the Wnt/β-Catenin Pathway

  • Jiang, Lan;Yang, Qianhong;Gao, Jianjun;Yang, Jiahong;He, Jiaqi;Xin, Hong;Zhang, Xuemei
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.557-568
    • /
    • 2021
  • Global knockout of the BK channel has been proven to affect bone formation; however, whether it directly affects osteoblast differentiation and the mechanism are elusive. In the current study, we further investigated the role of BK channels in bone development and explored whether BK channels impacted the differentiation and proliferation of osteoblasts via the canonical Wnt signaling pathway. Our findings demonstrated that knockout of Kcnma1 disrupted the osteogenesis of osteoblasts and inhibited the stabilization of β-catenin. Western blot analysis showed that the protein levels of Axin1 and USP7 increased when Kcnma1 was deficient. Together, this study confirmed that BK ablation decreased bone mass via the Wnt/β-catenin signaling pathway. Our findings also showed that USP7 might have the ability to stabilize the activity of Axin1, which would increase the degradation of β-catenin in osteoblasts.

Enhancement of Osteogenic Differentiation by Combination Treatment with 5-azacytidine and Thyroid-Stimulating Hormone in Human Osteoblast Cells

  • Sun, Hyun Jin;Song, Young Shin;Cho, Sun Wook;Park, Young Joo
    • International journal of thyroidology
    • /
    • v.10 no.2
    • /
    • pp.71-76
    • /
    • 2017
  • Background and Objectives: The role of thyroid-stimulating hormone (TSH) signaling on osteoblastic differentiation is still undetermined. The aim of this study was to investigate the effects of 5-aza-2'-deoxycytidine (5-azacytidine) on TSH-mediated regulations of osteoblasts. Materials and Methods: MG63, a human osteoblastic cell-line, was treated with 5-azacytidine before inducing osteogenic differentiation using osteogenic medium (OM) containing L-ascorbic acid and ${\beta}$-glyceophosphate. Bovine TSH or monoclonal TSH receptor stimulating antibody (TSAb) was treated. Quantitative real-time PCR analyses or measurement of alkaline phosphatase activities were performed for evaluating osteoblastic differentiation. Results: Studies for osteogenic-related genes or alkaline phosphatase activity demonstrated that treatment of TSH or TSAb alone had no effects on osteoblastic differentiation in MG63 cells. However, treatment of 5-azacytidine, per se, significantly increased osteoblastic differentiation and combination treatment of 5-azacytidine and TSH or TSAb in the condition of OM showed further significant increase of osteoblastic differentiation. Conclusion: Stimulating TSH signaling has little effects on osteoblastic differentiation in vitro. However, in the condition of epigenetic modification using inhibitor of DNA methylation, TSH signaling positively affects osteoblastic differentiation in human osteoblasts.

Effect of Phorbol 12-Myristate 13-Acetate on the Differentiation of Adipose-Derived Stromal Cells from Different Subcutaneous Adipose Tissue Depots

  • Song, Jennifer K.;Lee, Chang Hoon;Hwang, So-Min;Joo, Bo Sun;Lee, Sun Young;Jung, Jin Sup
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • Human adipose-tissue-derived stromal cells (hADSCs) are abundant in adipose tissue and can differentiate into multi-lineage cell types, including adipocytes, osteoblasts, and chondrocytes. In order to define the optimal harvest site of adipose tissue harvest site, we solated hADSCs from different subcutaneous sites (upper abdomen, lower abdomen, and thigh) and compared their proliferation and potential to differentiate into adipocytes and osteoblasts. In addition, this study examined the effect of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, on proliferation and differentiation of hADSCs to adipocytes or osteoblasts. hADSCs isolated from different subcutaneous depots have a similar growth rate. Fluorescence-activated cell sorting (FACS) analysis showed that the expression levels of CD73 and CD90 were similar between hADSCs from abdomen and thigh regions. However, the expression of CD105 was lower in hADSCs from the thigh than in those from the abdomen. Although the adipogenic differentiation potential of hADSCs from both tissue regions was similar, the osteogenic differentiation potential of hADSCs from the thigh was greater than that of hADSCs from the abdomen. Phorbol 12-myristate 13-acetate (PMA) treatment increased osteogenic differentiation and suppressed adipogenic differentiation of all hADSCs without affecting their growth rate and the treatment of Go6983, a general inhibitor of protein kinase C (PKC) blocked the PMA effect. These findings indicate that the thigh region might be a suitable source of hADSCs for bone regeneration and that the PKC signaling pathway may be involved in the adipogenic and osteogenic differentiation of hADSCs.

Evaluation of the effects of co-culture system of human dental pulp stem cells and epithelial cells on odonto/osteogenic differentiation capacity

  • Sang-Yun Lee;Seong-Ju Oh;Rubel Miah;Yong-Ho Choe;Sung-Lim Lee;Yeon Woo Jeong;Young-Bum Son
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.95-104
    • /
    • 2024
  • Background: In healthy dentin conditions, odontoblasts have an important role such as protection from invasion of pathogens. In mammalian teeth, progenitors such as mesenchymal stem cells (MSCs) can migrate and differentiate into odontoblast-like cells, leading to the formation of reparative dentin. For differentiation using stem cells, it is crucial to provide conditions similar to the complex and intricate in vivo environment. The purpose of this study was to evaluate the potential of differentiation into odonto/osteoblasts, and compare co-culture with/without epithelial cells. Methods: MSCs and epithelial cells were successfully isolated from dental tissues. We investigated the influences of epithelial cells on the differentiation process of dental pulp stem cells into odonto/osteoblasts using co-culture systems. The differentiation potential with/without epithelial cells was analyzed for the expression of specific markers and calcium contents. Results: Differentiated odonto/osteoblast derived from dental pulp tissue-derived mesenchymal stem cells with/without epithelial cells were evaluated by qRT-PCR, immunostaining, calcium content, and ALP staining. The expression of odonto/osteoblast-specific markers, calcium content, and ALP staining intensity were significantly increased in differentiated cells. Moreover, the odonto/osteogenic differentiation capacity with epithelial cells co-culture was significantly higher than without epithelial cells co-culture. Conclusions: These results suggest that odonto/osteogenic differentiation co-cultured with epithelial cells has a more efficient application.

Effect of Pahyeolsandong-tang (Poxiesanteng-tang) in Tibia Fracture-induced Mice (경골 파혈산동탕(破血散疼湯)이 골절 생쥐의 골 유합에 미치는 영향)

  • Shin, Woo-Suk;Parichuk, Kira;Cha, Yun-Yeop
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.4
    • /
    • pp.1-16
    • /
    • 2020
  • Objectives The main purpose of this study was to evaluate the bone healing effect of Pahyeolsandong-tang (PHT)(Poxiesanteng-tang) extract in tibia fracture-induced mice. Methods PHT was extracted using a solution of 35% ethanol in 60℃ for 8 hours. Mice were randomly divided into 4 groups (normal, control, PHT 50 and PHT 100). Mice of experimental groups were medicated with PHT 50 or 100 mg/kg for 7 to 21 days. To clarify the effect of bone fracture healing, relative messenger RNA (mRNA) expressions of osteocalcin (OCN), runt-related transcription factor 2 (Runx2), osterix (OSX), Sox9, collagen type II alpha 1 chain (Col2a1), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) were examined. Results In in vitro experiment, relative mRNA expression of OCN, Runx2, Col2a1 was significantly increased in PHT treated group to compare with control differentiation group. In in vivo experiment, relative mRNA expression of OCN, Runx2, OSX, Sox9, Col2a1, RANKL, OPG was significantly increased in PHT treated group. Conclusions This study showed that PHT accelerates bone fracture healing through the activation of osteoclasts and osteoblasts. It was showed that PHT significantly promotes osteoblasts differentiation by osteoblast differentiation markers such as OCN, Runx2, Col1a2. Also it was investigated that PHT had stimulatory effect on osteoblasts function through enhancing OCN, Runx2, OSX, Sox9, Col2a1 and, osteoclasts function through enhancing RANKL and OPG markers. PHT effectively promotes bone fracture healing process through activation of osteoblasts and osteoclasts.

FUNCTION OF RUNX2 AND OSTERIX IN OSTEOGENESIS AND TEETH (치아와 골형성에서의 Runx2와 Osterix의 기능)

  • Kim, Jung-Eun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.381-385
    • /
    • 2007
  • Bone is a dynamic organ that bone remodeling occurs throughout life and involves the process in which the bone matrix is broken down through resorption by osteoclasts and then built back again through bone formation by osteoblasts. Usually these two processes balance each other and a stable level of bone mass is maintained. We here discuss transcription factors involved in regulating the osteoblast differentiation pathway. Runx2 is a transcription factor which is essential in skeletal development by regulating osteoblast differentiation and chondrocyte maturation. Its companion subunit, Cbf${\beta}$ is needed for an early step in osteoblast differentiation pathway. Whereas Osterix(Osx) is a new identified osteoblast-specific transcription factor which is required for the differentiation of preosteoblasts into more mature and functional osteoblasts. We also discuss other transcription factors, Msx1 and 2, Dlx5 and 6, Twist, and Sp3 that affect skeletal patterning and development. Understanding the characteristics of mice in which these transcription factors are inactivated should help define their role in bone physiology and pathology of bone defects.

Limonium Tetragonum Enhances Osteoblastogenesis while Suppressing the Adipocyte Differentiation

  • Kim, Jung-Ae;Ahn, Byul-Nim;Oh, Jung Hwan;Karadeniz, Fatih;Lee, Jung Im;Seo, Youngwan;Kong, Chang-Suk
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Halophytes are plants that live in harsh environments in coastal regions and are known for their diverse chemical compositions. Limonium tetragonum, a halophyte endemic to Korean shores, is known for its bioactive compounds and is utilized in folk medicine. In this study L. tetragonum extract (LHE) was used to determine and evaluate its anti-osteoporotic properties. Pre-adipocyte and pre-osteoblasts were induced to differentiate along with LHE treatment, and their differentiation was evaluated using differentiation markers. LHE treatment decreased lipid accumulation in 3T3-L1 preadipocytes during adipogenesis. Results indicated that the LHE treatment also decreased the levels of key adipogenic transcription factors: PPARγ, SREBP1c, and C/EBPα. Enhancing osteoblastogenesis by LHE treatment was confirmed in osteoblastogenesis-induced MC3T3-E1 pre-osteoblasts. Cells treated with LHE resulted in increased calcification and alkaline phosphatase (ALP) activity compared with osteoblasts without LHE treatment. Pro-osteogenic and anti-adipogenic effects were also confirmed in D1 murine mesenchymal stromal cells which are capable of differentiation into both adipocytes and osteoblasts. LHE hindered adipogenesis and enhanced osteoblastogenesis in D1 MSCs in a similar fashion. In conclusion, L. tetragonum is believed to possess the potential to be utilized as a nutraceutical ingredient against osteoporotic conditions.

Luteolin Induces the Differentiation of Osteoblasts

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.99-106
    • /
    • 2010
  • Luteolin is a flavonoid that exists in a glycosylated form in celery and green pepper. Flavonoids possess antioxidant and anti-inflammatory properties and can reduce the expression of key inflammatory molecules in macrophages and monocytes. It has been reported also that some flavonoids have effects on bone metabolism. The effects of luteolin on the function of osteoblasts were investigated by measuring cell viability, alkaline phosphatase activity, type I collagen production, osteoprotegerin secretion, Wnt promoter activity, BMP-2 and Runx2 expression and calcified nodule formation. Luteolin has no effects upon osteoblast viability but induced an increase in alkaline phosphatase activity, type I collagen production and a decrease in osteoprotegerin secretion in these cells. Luteolin treatment also upregulated BMP-2 mRNA expression. These results suggest that luteolin may be a regulatory molecule that facilitates the differentiation of osteoblasts.

Carnosol induces the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via activating BMP-signaling pathway

  • Abdallah, Basem M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.197-206
    • /
    • 2021
  • Carnosol is a phenolic diterpene phytochemical found in rosemary and sage with reported anti-microbial, anti-oxidant, anti-inflammatory, and anti-carcinogenic activities. This study aimed to investigate the effect of carnosol on the lineage commitment of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblasts and adipocytes. Interestingly, carnosol stimulated the early commitment of mBMSCs into osteoblasts in dose-dependent manner as demonstrated by increased levels of alkaline phosphatase activity and Alizarin red staining for matrix mineralization. On the other hand, carnosol significantly suppressed adipogenesis of mBMSCs and downregulated both early and late markers of adipogenesis. Carnosol showed to induce osteogenesis in a mechanism mediated by activating BMP signaling pathway and subsequently upregulating the expression of BMPs downstream osteogenic target genes. In this context, treatment of mBMSCs with LDN-193189, BMPR1 selective inhibitor showed to abolish the stimulatory effect of carnosol on BMP2-induced osteogenesis. In conclusion, our data identified carnosol as a novel osteoanabolic phytochemical that can promote the differentiation of mBMSCs into osteoblasts versus adipocytes by activating BMP-signaling.