Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0004

BK Channel Deficiency in Osteoblasts Reduces Bone Formation via the Wnt/β-Catenin Pathway  

Jiang, Lan (Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University)
Yang, Qianhong (Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University)
Gao, Jianjun (Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University)
Yang, Jiahong (Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University)
He, Jiaqi (Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University)
Xin, Hong (Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University)
Zhang, Xuemei (Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University)
Abstract
Global knockout of the BK channel has been proven to affect bone formation; however, whether it directly affects osteoblast differentiation and the mechanism are elusive. In the current study, we further investigated the role of BK channels in bone development and explored whether BK channels impacted the differentiation and proliferation of osteoblasts via the canonical Wnt signaling pathway. Our findings demonstrated that knockout of Kcnma1 disrupted the osteogenesis of osteoblasts and inhibited the stabilization of β-catenin. Western blot analysis showed that the protein levels of Axin1 and USP7 increased when Kcnma1 was deficient. Together, this study confirmed that BK ablation decreased bone mass via the Wnt/β-catenin signaling pathway. Our findings also showed that USP7 might have the ability to stabilize the activity of Axin1, which would increase the degradation of β-catenin in osteoblasts.
Keywords
${\beta}-catenin$; BK channel; bone development; Kcnma1; osteoblasts;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, F., Rummukainen, P., Heino, T., and Kiviranta, R. (2021). Osteoblastic Wnt1 regulates periosteal bone formation in adult mice. Bone 143, 115754.   DOI
2 Xiang, L., Zheng, J., Zhang, M., Ai, T., and Cai, B. (2020). FOXQ1 promotes the osteogenic differentiation of bone mesenchymal stem cells via Wnt/β-catenin signaling by binding with ANXA2. Stem Cell Res. Ther. 11, 403.   DOI
3 Park, H., Kim, J., and Baek, K. (2020). Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int. J. Mol. Sci. 21, 3904.   DOI
4 Qing, H. and Bonewald, L.F. (2009). Osteocyte remodeling of the perilacunar and pericanalicular matrix. Int. J. Oral Sci. 1, 59-65.   DOI
5 Li, M., Sun, Y., Simard, J., Wang, J., and Chai, T.C. (2009). Augmented bladder urothelial polyamine signaling and block of BK channel in the pathophysiology of overactive bladder syndrome. Am. J. Physiol. Cell Physiol. 297, C1445-C1451.   DOI
6 Saidak, Z., Le Henaff, C., Azzi, S., Marty, C., Da Nascimento, S., Sonnet, P., and Marie, P. (2015). Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. J. Biol. Chem. 290, 6903-6912.   DOI
7 Qian, L., Liu, X., Yu, Z., and Wang, R. (2020). BK channel dysfunction in diabetic coronary artery: role of the E3 ubiquitin ligases. Front. Physiol. 11, 453.   DOI
8 Kim, R. and Sixma, T. (2017). Regulation of USP7: a high incidence of E3 complexes. J. Mol. Biol. 429, 3395-3408.   DOI
9 Kwan, B.C., Chow, K., Leung, C., Law, M., Cheng, P.M., Yu, V., Li, P.K., and Szeto, C. (2013). Circulating bacterial-derived DNA fragments as a marker of systemic inflammation in peritoneal dialysis. Nephrol. Dial. Transplant. 28, 2139-2145.   DOI
10 Lesage, F., Hibino, H., and Hudspeth, A.J. (2004). Association of beta-catenin with the alpha-subunit of neuronal large-conductance Ca2+-activated K+ channels. Proc. Natl. Acad. Sci. U. S. A. 101, 671-675.   DOI
11 Marie, P. (2008). Transcription factors controlling osteoblastogenesis. Arch. Biochem. Biophys. 473, 98-105.   DOI
12 Matsumoto, Y., Rose, J.L., Lim, M., Adissu, H.A., Law, N., Mao, X., Cong, F., Mera, P., Karsenty, G., Goltzman, D., et al. (2017). Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism. J. Clin. Invest. 127, 2612-2625.   DOI
13 Matsushita, Y., Nagata, M., Kozloff, K.M., Welch, J.D., Mizuhashi, K., Tokavanich, N., Hallett, S.A., Link, D.C., Nagasawa, T., Ono, W., et al. (2020). A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat. Commun. 11, 332.   DOI
14 Alula, K., Delgado-Deida, Y., Jackson, D., Venuprasad, K., and Theiss, A. (2021). Nuclear partitioning of Prohibitin 1 inhibits Wnt/β-catenin-dependent intestinal tumorigenesis. Oncogene 40, 369-383.   DOI
15 Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J., Behringer, R., and de Crombrugghe, B. (2002). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17-29.   DOI
16 Oh, Y., Ahn, C., and Je, J. (2020). Blue mussel-derived peptides PIISVYWK and FSVVPSPK trigger Wnt/±-catenin signaling-mediated osteogenesis in human bone marrow mesenchymal stem cells. Mar. Drugs 18, 510.   DOI
17 Appelman-Dijkstra, N.M. and Papapoulos, S.E. (2018). Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat. Rev. Endocrinol. 14, 605-623.   DOI
18 Zhang, Y., Liu, S., Mickanin, C., Feng, Y., Charlat, O., Michaud, G., Schirle, M., Shi, X., Hild, M., Bauer, A., et al. (2011). RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13, 623-629.   DOI
19 Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E., and Xie, C. (2018). Osteoblast-osteoclast interactions. Connect. Tissue Res. 59, 99-107.   DOI
20 An, T., Gong, Y., Li, X., Kong, L., Ma, P., Gong, L., Zhu, H., Yu, C., Liu, J., Zhou, H., et al. (2017). USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth. Biochem. Pharmacol. 131, 29-39.   DOI
21 Bailey, C.S., Moldenhauer, H.J., Park, S.M., Keros, S., and Meredith, A.L. (2019). KCNMA1-linked channelopathy. J. Gen. Physiol. 151, 1173-1189.   DOI
22 Bhattacharya, S., Chakraborty, D., Basu, M., and Ghosh, M.K. (2018). Emerging insights into HAUSP (USP7) in physiology, cancer and other diseases. Signal Transduct. Target. Ther. 3, 17.   DOI
23 Bian, S., Bai, J., Chapin, H., Moellic, C.L., Dong, H., Caplan, M., Sigworth, F.J., and Navaratnam, D.S. (2011). Interactions between β-catenin and the HSlo potassium channel regulates HSlo surface expression. PLoS One 6, e28264.   DOI
24 Friese, A., Kapoor, S., Schneidewind, T., Vidadala, S., Sardana, J., Brause, A., Forster, T., Bischoff, M., Wagner, J., Janning, P., et al. (2019). Chemical genetics reveals a role of dCTP pyrophosphatase 1 in Wnt signaling. Angew. Chem. Int. Ed. Engl. 58, 13009-13013.   DOI
25 Zhang, Y., Yue, J., Che, H., Sun, H., Tse, H., and Li, G. (2014). BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 229, 202-212.   DOI
26 Zhou, L., Huang, Y., Zhao, J., Yang, H., and Kuai, F. (2020). Oridonin promotes osteogenesis through Wnt/β-catenin pathway and inhibits RANKL-induced osteoclastogenesis in vitro. Life Sci. 262, 118563.   DOI
27 Zhang, X., Wang, Y., Zhao, H., Han, X., Zhao, T., Qu, P., Li, G., and Wang, W. (2020). Extracellular vesicle-encapsulated miR-22-3p from bone marrow mesenchymal stem cell promotes osteogenic differentiation via FTO inhibition. Stem Cell Res. Ther. 11, 227.   DOI
28 Choi, J., Lai, J., Xiong, Z., Ren, M., Moorer, M., Stains, J., and Cao, K. (2018). Diminished canonical β-catenin signaling during osteoblast differentiation contributes to osteopenia in progeria. J. Bone Miner. Res. 33, 2059-2070.   DOI
29 Foller, M., Jaumann, M., Dettling, J., Saxena, A., Pakladok, T., Munoz, C., Ruth, P., Sopjani, M., Seebohm, G., Ruttiger, L., et al. (2012). AMP-activated protein kinase in BK-channel regulation and protection against hearing loss following acoustic overstimulation. FASEB J. 26, 4243-4253.   DOI
30 Funato, N., Taga, Y., Laurie, L., Tometsuka, C., Kusubata, M., and Ogawa-Goto, K. (2020). The transcription factor HAND1 is involved in cortical bone mass through the regulation of collagen expression. Int. J. Mol. Sci. 21, 8638.   DOI
31 Niday, Z. and Bean, B.P. (2021). BK channel regulation of after-potentials and burst firing in cerebellar Purkinje neurons. J. Neurosci. 41, 2854-2869.   DOI
32 Hei, H., Gao, J., Dong, J., Tao, J., Tian, L., Pan, W., Wang, H., and Zhang, X. (2016). BK knockout by TALEN-mediated gene targeting in osteoblasts: KCNMA1 determines the proliferation and differentiation of osteoblasts. Mol. Cells 39, 530-535.   DOI
33 Hirukawa, K., Muraki, K., Ohya, S., Imaizumi, Y., and Togari, A. (2008). Electrophysiological properties of a novel Ca(2+)-activated K(+) channel expressed in human osteoblasts. Calcif. Tissue Int. 83, 222-229.   DOI
34 Hu, Y., Hao, X., Liu, C., Ren, C., Wang, S., Yan, G., Meng, Y., Mishina, Y., Shi, C., and Sun, H. (2021). Acvr1 deletion in osteoblasts impaired mandibular bone mass through compromised osteoblast differentiation and enhanced sRANKL-induced osteoclastogenesis. J. Cell. Physiol. 236, 4580-4591.   DOI
35 Ji, L., Lu, B., Zamponi, R., Charlat, O., Aversa, R., Yang, Z., Sigoillot, F., Zhu, X., Hu, T., Reece-Hoyes, J., et al. (2019). USP7 inhibits Wnt/β-catenin signaling through promoting stabilization of Axin. Nat. Commun. 10, 4184.   DOI
36 Rezzonico, R., Cayatte, C., Bourget-Ponzio, I., Romey, G., Belhacene, N., Loubat, A., Rocchi, S., Obberghen, E.V., Girault, J., Rossi, B., et al. (2003). Focal adhesion kinase pp125FAK interacts with the large conductance calcium-activated hSlo potassium channel in human osteoblasts: potential role in mechanotransduction. J. Bone Miner. Res. 18, 1863-1871.   DOI
37 Castillo, J.P., Sanchez-Rodriguez, J.E., Hyde, H.C., Zaelzer, C.A., Aguayo, D., Sepulveda, R.V., Luk, L.Y., Kent, S.B., Gonzalez-Nilo, F.D., Bezanilla, F., et al. (2016). β1-subunit-induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel. Proc. Natl. Acad. Sci. U. S. A. 113, E3231-E3239.   DOI
38 Gonzalez-Perez, V. and Lingle, C.J. (2019). Regulation of BK channels by beta and gamma subunits. Annu. Rev. Physiol. 81, 113-137.   DOI
39 Henney, N.C., Li, B., Elford, C., Reviriego, P., Campbell, A.K., Wann, K.T., and Evans, B.A. (2009). A large-conductance (BK) potassium channel subtype affects both growth and mineralization of human osteoblasts. Am. J. Physiol. Cell Physiol. 297, C1397-C1408.   DOI
40 Li, V., Ng, S., Boersema, P., Low, T., Karthaus, W., Gerlach, J., Mohammed, S., Heck, A., Maurice, M., Mahmoudi, T., et al. (2012). Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 149, 1245-1256.   DOI
41 Shu, B., Zhao, Y., Zhao, S., Pan, H., Xie, R., Yi, D., Lu, K., Yang, J., Xue, C., Huang, J., et al. (2020). Inhibition of Axin1 in osteoblast precursor cells leads to defects in postnatal bone growth through suppressing osteoclast formation. Bone Res. 8, 31.   DOI
42 Sausbier, U., Dullin, C., Missbach-Guentner, J., Kabagema, C., Flockerzie, K., Kuscher, G.M., Stuehmer, W., Neuhuber, W., Ruth, P., Alves, F., et al. (2011). Osteopenia due to enhanced cathepsin K release by BK channel ablation in osteoclasts. PLoS One 6, e21168.   DOI
43 Typlt, M., Mirkowski, M., Azzopardi, E., Ruettiger, L., Ruth, P., and Schmid, S. (2013). Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory. PLoS One 8, e81270.   DOI
44 Wang, Z., Subramanya, A., Satlin, L., Pastor-Soler, N., Carattino, M., and Kleyman, T. (2013). Regulation of large-conductance Ca2+-activated K+ channels by WNK4 kinase. Am. J. Physiol. Cell Physiol. 305, C846-C853.   DOI
45 Whitt, J., McNally, B., and Meredith, A.L. (2018). Differential contribution of Ca2+ sources to day and night BK current activation in the circadian clock. J. Gen. Physiol. 150, 259-275.   DOI
46 Schickling, B.M., England, S.K., Aykin-Burns, N., Norian, L.A., Leslie, K.K., and Frieden-Korovkina, V.P. (2015). BKCa channel inhibitor modulates the tumorigenic ability of hormone-independent breast cancer cells via the Wnt pathway. Oncol. Rep. 33, 533-538.   DOI
47 Song, D., He, G., Song, F., Wang, Z., Liu, X., Liao, L., Ni, J., Silva, M., and Long, F. (2020). Inducible expression of Wnt7b promotes bone formation in aged mice and enhances fracture healing. Bone Res. 8, 4.   DOI
48 Zhang, L., Tang, Y., Zhu, X., Tu, T., Sui, L., Han, Q., Yu, L., Meng, S., Zheng, L., Valverde, P., et al. (2017). Overexpression of miR-335-5p promotes bone formation and regeneration in mice. J. Bone Miner. Res. 32, 2466-2475.   DOI