• Title/Summary/Keyword: osteoblastic differentiation

Search Result 169, Processing Time 0.027 seconds

Cellular zinc deficiency inhibits the mineralized nodule formation and downregulates bone-specific gene expression in osteoblastic MC3T3-E1 cells

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.51 no.5
    • /
    • pp.379-385
    • /
    • 2018
  • Purpose: Zinc (Zn) is an essential trace element for bone mineralization and osteoblast function. We examined the effects of Zn deficiency on osteoblast differentiation and mineralization in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured at concentration of 1 to $15{\mu}M$ $ZnCl_2$ (Zn- or Zn+) for 5, 15 and 25 days up to the calcification period. Extracellular matrix mineralization was detected by staining Ca and P deposits using Alizarin Red and von Kossa stain respectively, and alkaline phosphatase (ALP) activity was detected by ALP staining and colorimetric method. Results: Extracellular matrix mineralization was decreased in Zn deficiency over 5, 15, and 25 days. Similarly, staining of ALP activity as the sign of an osteoblast differentiation, was also decreased by Zn deficiency over the same period. Interestingly, the gene expression of bone-related markers (ALP, PTHR; parathyroid hormone receptor, OPN; osteopontin, OC; osteocalcin and COLI; collagen type I), and bone-specific transcription factor Runx2 were downregulated by Zn deficiency for 5 or 15 days, however, this was restored at 25 days. Conclusion: Our data suggests that Zn deficiency inhibits osteoblast differentiation by retarding bone marker gene expression and also inhibits bone mineralization by decreasing Ca/P deposition as well as ALP activity.

Beneficial Effects of Marine Bioactive Substances on Bone Health, via Osteoarthritis Inhibition and Osteoblast Differentiation

  • Nguyen, Minh Hong Thi;Qian, Zhong-Ji;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Bone health is maintained by balance between bone resorption and bone formation, and bone homeostasis requires balanced interactions between osteoblasts and osteoclasts. Most of drugs and functional foods for bone health have been developed as bone resorption inhibitors, which maintain bone mass by inhibiting the function of osteoclasts. The recent studies have shown beneficial effects of marine natural products on bone health. Therefore, this review is aimed to study effects of marine-derived natural substances on osteoarthritis inhibition via attenuation of MMPs and osteoblastic differentiation via activation of alkaline phosphatase (ALP), osteoclacin (OC), bone morphogenic protein-2 (BMP-2) as an important factor for bone formation, and mineralization. The present review can provide new insights in the osteoblastic differentiation of marine natural products and possibility for their application in bone health supplement.

The effect of rhBMP-2 on the osteoblastic differentiation of human periodontal ligament cells and gingival fibroblasts in vitro (치주인대세포와 치은섬유아세포의 분화에 미치는 rhBMP-2의 효과에 대한 연구)

  • Kim, Hyeon-Jong;Choi, Sang-Mook;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.389-402
    • /
    • 2002
  • BMP can induce ectopic bone formation when implanted into sites such as rat muscle and can greatly enhance healing of bony defects when applied exogenously. In addition, BMP stimulated osteoblastic differentiation in vitro in various types of cells. The aim of this study was to investigate the effect of recombinant human bone morphogenetic protein(rhBMP-2) on the proliferation and osteoblastic differentiation of human periodontal ligament cells and gingival fibroblasts. The cell number and alkaline phosphatase activity were measured in 3 experimental groups of human periodontal ligament cells and gingival fibroblasts (control group, rhBMP-2 50ng/ml group, and rhBMP-2 100ng/ml group) at 1 and 2 weeks after culture. At the same time, total RNA of cultured cells were extracted and reverse trascription polymerase chain reaction(RT-PCR) was performed to determine the expression of mRNA of bone matrix protein. RhBMP-2 had no effect on the cell proliferation of human periodontal ligament cells and gingival fibroblasts. Alkaline phosphatase activity was elevated significantly by rhBMP-2 in both cells. And periodontal ligament cells showed significantly higher alkaline phosphatase activity than gingival fibroblasts. ${\beta}$-actin, type I collagen, alkaline phosphatase, BMP-2 mRNA were expressed in all of the samples. Osteopontin, osteocalcin mRNA were expressed in all periodontal ligament cell groups, and rhBMP-2 50ng/ml group, rhBMP-2 100ng/ml group of 2 week culture period of gingival fibroblasts. Bone sialoprotein mRNA was only expressed in rhBMP-2 50ng/ml group and rhBMP-2 100ng/ml group of 2-week culture period. These results suggest that rhBMP-2 stimulates osteoblastic differentiation in human periodontal ligament cells and gingival fibroblasts in vitro.

Cottonseed Extract Improves the Function of Osteoblastic MC3T3-E1 Cells

  • Choi, Eun-Mi;Lee, Kyung-Hee
    • Food Quality and Culture
    • /
    • v.2 no.2
    • /
    • pp.85-88
    • /
    • 2008
  • We have investigated the effects of cottonseed extract on the proliferation, differentiation and lipopolysaccharide (LPS)-induced production of local factors in murine clonal osteoblastic MC3T3-E1 cells. Ethanol extract of cotton seed ($4{\sim}63{\mu}g/mL$) significantly increased the proliferatin of MC3T3-E1 cells (p<0.05). Moreover, cottonseed extract ($10{\sim}50{\mu}g/mL$) caused a significant elevation of alkaline phosphatase (ALP) activity and collagen content in the cells. Lipopolysaccharide (LPS) is a potent stimulator of bone resorption in inflammatory diseases. We examined the effect of cottonseed extract on the LPS-induced production of tumor necrosis factor a (TNF-$\alpha$) and nitric oxide (NO) in MC3T3-E1 cells. Treatment with cottonseed extract ($10{\sim}50{\mu}g/mL$) decreased the $5{\mu}g/mL$ LPS-induced production of TNF-$\alpha$ and NO in osteoblasts, suggesting that the antiresorptive action of cottonseed extract may be mediated by decrease in these local factors. This study suggests that cottenseed may contribute to antiresorptive action against osteoblastic cells, resulting in a beneficial effect in promoting the function of osteoblastic cells.

  • PDF

Magnesium vs. machined surfaced titanium - osteoblast and osteoclast differentiation

  • Kwon, Yong-Dae;Lee, Deok-Won;Hong, Sung-Ok
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.157-164
    • /
    • 2014
  • PURPOSE. This study focused on in vitro cell differentiation and surface characteristics in a magnesium coated titanium surface implanted on using a plasma ion source. MATERIALS AND METHODS. 40 commercially made pure titanium discs were prepared to produce Ti oxide machined surface (M) and Mg-incorporated Ti oxide machined surface (MM). Surface properties were analyzed using a scanning electron microscopy (SEM). On each surface, alkaline phosphatase (ALP) activity, alizarin red S staining for mineralization of MC3T3-E1 cells, and quantitative analysis of osteoblastic gene expression, were evaluated. Actin ring formation assay and gene expression analysis of TRAP and GAPDH performing RT-PCR were performed to characterize osteoclast differentiation on mouse bone marrow-derived macrophages (BMMs). RESULTS. MM showed similar surface morphology and surface roughness with M, but was slightly smoother after ion implantation at the micron scale. M was more hydrophobic than MM. No significant difference between surfaces on ALP activity at 7 and 14 days were observed. Real-time PCR analyses showed similar levels of mRNA expression of the osteoblast phenotype genes; osteopontin (OPN), osteocalcin (OCN), bone sialoprotein (BSP), and collagen 1 (Col 1) in cell grown on MM at 7, 14 and 21 days. Alizarin red S staining at 21 days showed no significant difference. BMMs differentiation increased in M and MM. Actin ring formation assay and gene expression analysis of TRAP showed osteoclast differentiation to be more active on MM. CONCLUSION. Both M and MM have a good effect on osteoblastic cell differentiation, but MM may speed the bone remodeling process by activating on osteoclast differentiation.

Effect of Chitosan on Expression of Osteogenic Genes during the Healing of Rat Extraction Socket

  • Youn, Gap-Hee;Jung, Seunggon;Lee, Tae-Hoon;Kook, Min-Suk;Park, Hong-Ju;Oh, Hee-Kyun
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • Purpose: This study was performed to evaluate the effect of chitosan combined with absorbable gelatin compressed sponge on the expression of osteoblastic differentiation marker genes during the healing of rat extraction socket. Materials and Methods: Twenty-four male Wistar rats were used. In control group, the extraction socket was closed with suture. In chitosan group, the socket was filled with chitosan combined with Gelfoam (Pharmacia & Upjohn Co.) and closed with suture. In each group, the animals were sacrificed at 3 days, 1 week, 2 weeks, and 4 weeks postoperatively. The expression of osteoblastic differentiation marker genes, including BSP, OCN, Runx2, and Col1 were quantified by real-time polymerase chain reaction. Result: Compared to control group, the mRNA level of BSP in chitosan group increased significantly at 2 weeks after extraction and the level of OCN decreased significantly at 3 days and 4 weeks after extraction (P<0.05). The mRNA levels of OCN, Runx2, and Col1 in chitosan group increased slightly at 2 weeks after extraction, but there was no statistical difference between groups. Conclusion: The results indicate that chitosan has some effects on the expression of osteogenic genes during the healing of extraction sockets.

Biocompatibility and Bioactivity of Four Different Root Canal Sealers in Osteoblastic Cell Line MC3T3-El

  • Jun, Nu-Ri;Lee, Sun-Kyung;Lee, Sang-Im
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.243-250
    • /
    • 2021
  • Background: Endodontic sealers or their toxic components may become inflamed and lead to delayed wound healing when in direct contact with periapical tissues over an extended period. Moreover, an overfilled sealer can directly interact with adjacent tissues and may cause immediate necrosis or further resorption. Therefore, the treatment outcome conceivably depends on the endodontic sealer's biocompatibility and osteogenic potential. This study aimed to evaluate the cell viability and osteogenic effects of four different sealers in osteoblastic cells. Methods: AH Plus (resin-based sealer), Pulp Canal Sealer EWT (zinc oxide-eugenol sealer), BioRoot RCS (calcium silicate-based sealer), and Well-Root ST (MTA-based calcium silicate sealer) were mixed strictly according to the manufacturer's instructions, and dilutions of sealer extracts (1/2, 1/5 and 1/10) were determined. Cell viability was measured using the water-soluble tetrazolium-8 (WST-8) assay. Differentiation was assessed by alkaline phosphatase (ALP) activity and mineralized nodule formation by Alizarin Red S staining. Results: The cell viability of the extracts derived from the sealers excluding Well-Root ST was concentration dependent, with sealer extracts having the least viability at a 1/2 dilution. At sealer extract dilution of 1/10, the test groups showed the same survival rate as that control group, with the exception of BioRoot RCS. Among all experimental groups, BioRoot RCS showed the highest cell viability after 48 hours. The ALP activity was significantly higher in a concentration-dependent manner. Furthemore, all four materials promoted ALP activity and mineralized nodule formation compared to the control at 1/10 dilutions. Conclusion: This is the first study to highlight the differences in biological activity of these four materials. These results suggest that the composition of root canal sealers appears to alter the form of biocompatibility and osteoblastic differentiation.

Anti-osteoporotic Effects of Unripe Fructus of Rubus coreanus Miquel in Osteoblastic and Osteoclastic Cells

  • Kim, Hyo Jin;Sim, Dong-Soo;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.593-600
    • /
    • 2014
  • Osteoporosis is a progressive bone disease characterized by low bone mass which is caused by disturbance in the balance between the activities of osteoblasts and osteoclasts. Postmenopausal osteoporosis is one of the most common disorders in women after menopause, which is linked to an estrogen deficiency and characterized by an excessive loss of trabecular bone. Rubus coreanus has been used for their various pharmacological properties in Asia as a traditional medicine. To investigate the effect of unripe fruits of R. coreanus 30% ethanol extract (RCE) on osteoblast-like cells (MG63) differentiation, we examined the effects of RCE on in vitro osteoblastic differentiation markers, alkaline phosphatase (ALP) activity and receptor activator of nuclear factor ${\kappa}$-B ligand (RANKL) and osteoprotegerin (OPG) expression. The high concentration (50 and $100{\mu}g/mL$) of RCE markedly increased ALP activity, whereas decreased the RANKL/OPG. We also investigated the effect of RCE on M-CSF plus RANKL-induced differentiation of pre-osteoclast cells (RAW 264.7). RCE treatment remarkably inhibited M-CSF/RANKL-induced formation of osteoclast-like multinuclear cells from RAW 264.7 cells. Moreover, the inhibitory effect of RCE was reduced by selective estrogen receptor-${\alpha}$ antagonist. Our research suggests that suggested that unripe fruits of R. coreanus may act beneficial effects on bone mass by regulating both osteoblast and osteoclast.

Effects of DSG on Osteoblastic Cell from Rat Calvariae in the Presence of Dexamethasone (단치소요산가미방이 Dexamethasone 처리한 랫드의 두개골 세포에 미치는 영향)

  • Park, Jong-Hyeong;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.10 no.2
    • /
    • pp.19-30
    • /
    • 2006
  • It is well known that glucocorticoid may induce osteoporosis as its side effect in long-term therapy. The inhibition of osteoblast by glucocorticoid is also recognized as its action mechanism of decreased bone formation. In this study, the effect of DSG, Danchisoyosangamibang, on the differentiation and function of osteoblastic cells was investigated. The osteoblastic cells were isolated from rat calvariae using collagenase treatment. The cell counting, enzyme activity assay, MTT assay, collagen content assay were done to determine the cell proliferation, intracellular alkaline phosphatase (ALP) activity, bone martrix production, and cell apoptosis. DSG enhanced the cell proliferation after the culture for 10 days. ALP activity and total protein synthesis, and intracelluar collagen synthesis were increased time dependently when the cells were treated with DSG in the presence of dexamethasone. And, DSG restored calvarial cell function decreased by dexamethasone.

  • PDF

Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.51 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • Purpose: Runx2 (runt-related transcription factor 2), a bone-specific transcription factor, is a key regulator of osteoblast differentiation and its expression is induced by the activation of BMP-2 signaling. This study examined whether zinc modulates BMP-2 signaling and therefore stimulates Runx2 and osteoblast differentiation gene expression. Methods: Two osteoblastic MC3T3-E1 cell lines (subclones 4 as a high osteoblast differentiation and subclone 24 as a low osteoblastic differentiation) were cultured in an osteogenic medium (OSM) as the normal control, Zn-($1{\mu}M$ Zn) or Zn+($15{\mu}M$ Zn) for 24 h. The genes and proteins for BMP-2 signaling (BMP-2, Smad-1/p-Smad-1), transcription factors (Runx2, osterix), and osteoblast differentiation marker proteins were assessed. Results: In both cell lines, BMP-2 mRAN and protein expression and extracellular BMP-2 secretion all decreased in Zn-. The expression of Smad-1 (downstream regulator of BMP-2 signaling) and p-Smad-1 (phosphorylated Smad-1) also downregulated in Zn-. Furthermore, the expression of the bone-specific transcription factors, Runx2 and osterix, decreased in Zn-, which might be due to the decreased BMP-2 expression and Smad-1 activation (p-Smad-1) by Zn-, because Runx2 and osterix both are downstream in BMP-2 signaling. Bone marker gene expression, such as alkaline phosphatase (ALP), collagen type I (COLI), osteocalcin, and osteopontin were also downregulated in Zn-. Conclusion: The results suggest that a zinc deficiency in osteoblasts suppresses the BMP-2 signaling pathway via the suppression of Smad-1 activation, and this suppressed BMP-2 signaling can cause poor osteoblast differentiation.