• Title/Summary/Keyword: osteoblast differentiation

Search Result 316, Processing Time 0.021 seconds

EFFECT OF INTERLEUKIM-10 ON THE BONE RESORPTION INDUCED BY INTERLEUKIN-1B (Interleukin-10 이 $interleukin-1{\beta}$로 유도되는 골흡수에 미치는 효과)

  • Yu, Yun-Jung;Kang, Yun-Sun;Lee, Syng-Ill
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.321-339
    • /
    • 1994
  • The cytokines released by osteoblasts induce bone resorption via the differentiation of osteoclast precursors. In this process, $interleukin-1{\beta}$($IL-1{\beta}$)-induced bone resorption is mediated by granulocyte macrophage-colony stimulation factor(GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor ${\alpha}$($TNF-{\alpha}$) released from osteoblasts. Since these cytokines (GM-CSF, IL-6, $TNF-{\alpha}$) are produced by not only osteoblasts but also monocytes, and interleukin-10(I1-10) inhibits the secretion of these cytokines from monocytes, it may be speculated that IL 10 could modulate the production of GM-CSF, IL-6, and $TNF-{\alpha}$ by osteoblasts, then control $IL-1{\beta}-induced$ bone resorption. Therefore, the aims of the present study were to examine the effects of IL-10 on bone resorption. The sixten or seventeen-day pregnant ICR mice were injected with $^{45}Ca$ and sacrificed one day after injection. Then fetal mouse calvaria prelabeled with $^{45}Ca$ were dissected out. In order to confirm the degree of bone resorption, mouse calvaria were treated with Lipopolysaccharide(LPS), $TNF-{\alpha}$, $IL-1{\alpha}$, IL-8, $IL-1{\beta}$, and $IL-1{\alpha}$, Then, IL-10 and $interferon-{\gamma}$ ($IFN-{\gamma}$) were added to calvarial medium, in an attempt to evaluate the effect of $IL-1{\beta}-induced$ bone resorption. In addition, osteoclasts formation in bone marrow cell cultures, and the concentration of IL-6, $TNF-{\alpha}$, and GM-CSF produced from mouse calvarial cells were investigated in response to $IL-1{\beta}$ alone and simultaneously adding f $IL-1{\beta}$ and IL-10. The degree of bone resorption was expressed as the ratio of $^{45}Ca$ release(the treated/the control). The osteoclasts in bone marrow cultures were indentified by tartrate resistant acid phosphatase(TRAP) stain and the concentration of the cytokines was quantified using enzyme linked immunosorbent method. As results of these studies, bone resorption was induced by LPS(1 ng/ml ; the ratio of $^{45}Ca$ release, $1.14{\pm}0.07$). Also $IL-1{\beta}$(1 ng/ml), $IL-1{\alpha}$(1 ng/ml), and $TNF-{\alpha}$(1 ng/ml) resulted in bone resorption(the rations of $^{45}Ca$ release, $1.61{\pm}0.26$, $1.77{\pm}0.03$, $1.20{\pm}0.15$ respectively), but IL-8 did not(the ratio of $^{45}Ca$ release, $0.93{\pm}0.21$). The ratios of $^{45}Ca$ release in response to IL-10(400 ng/ml) and $IFN-{\gamma}$(100 ng/ml) were $1.24{\pm}0.12$ and $1.08{\pm}0.04$ respectively, hence these cytokines inhibited $IL-1{\beta}$(1 ng/ml)-induced bone resorption(the ratio of $^{45}Ca$ release $1.65{\pm}0.24$). While $IL-1{\beta}$(1 ng/ml) increased the number of TRAP positive multinulcleated cells in bone marrow cultures($20{\pm}11$), simultaneously adding $IL-1{\beta}$(1 ng/ml) and IL-10(400 ng/ml) decreased the number of these cells($2{\pm}2$). Nevertheless, IL-10(400 ng/ml) did not affect the IL-6, GM-CSF, and $TNF-{\alpha}$ secretion from $IL-1{\beta}$(1 ng/ml)-activated mouse calvarial cells. From the above results, it may be suggested that IL-10 inhibites $IL-1{\beta}-induced$ osteoclast differntiation and bone resorption. However, the inhibitory effect of IL-10 on the osteoclast formation seems to be mediated not by the reduction of IL-6, GM-CSF, and $TNF-{\alpha}$ production, but by other mechanisms.

  • PDF

The effect of safflower seed fraction extract on periodontal ligament fibroblast and MC3T3-E1 cell in vitro (홍화씨 분획 추출물이 치주인대 섬유아세포와 MC3T3-E1 세포에 미치는 영향)

  • Huh, Ji-Sun;Kang, Jung-Hwa;Yoo, Yun-Jung;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.833-846
    • /
    • 2001
  • Recently, use of natural medicine is getting more attention, and some of them are believed to be effective in the treatment of periodontitis. Among them, the seeds of safflower(Carthamus tinctrorius L.) have been proven to be effective through its use in bone diseases such as fracture and osteoporosis. During the last few years, studies using the seeds of safflower gown in Korea have been active, and it has been reported that safflower seed extract increase the proliferation and the alkaline phosphatase(ALP) activity of human periodontal ligament fibroblast(hPDLF), osteoblast, and that they promote the mineralization process. In animal studies, when safflower seed extract were administered orally new bone formation was promoted. Recently, in an effort to find out the most effective osteogenic components, among many components of the safflower seed, various safflower seed fraction extracts were obtained by multistep extraction of the safflower components using various solvents. Among these, saf-M-W fraction extracted by methanol and water was most effective in increasing osteogenic potential of osteoblasts. In this study, the effect of safflower seed fraction extract, saf-M-W, on the growth and differentiation of hPDLF and MC3T3-E1 cell was investigated. The toxicity of saf-M-W on both cells was measured using M'IT(3-(4,5dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide) test, and ALP activity was measured using the colorimetric assay of hPDLF. In addition, in MC3T3-El cells, the expression of ALP, bone sialoprotein(BSP) mRNA was observed using Northern blot, and the mineralized nodule formation Was observed using von Kossa stain and phase-contrast microscope. 1. In concentrations below $10{\mu}g/ml$, saf-M-W didn't show any toxicity on hPDLF and MC3T3-El cell. 2. The change in saf-M-W concentration had no effect on the ALP activity of hPDLF. 3. In MC3T-E1 cells, mRNA expressions of ALP and BSP were greater in the experimental group treated with $10{\mu}g/ml$ concentration of saf-M-W compared with the control group. 4. In MC3T3-El cells, abundance of mineralized nodules were formed in the experimental group treated with $10{\mu}g/ml$ Concentration of saf-M-W, while no mineralized nodule was formed in the control group. These results suggest that safflower seed fraction extract, saf-M-W. didn't show any toxicity on hPDLF and MC3T3-E1 cell at concentrations below $10{\mu}g/ml$ and effectively enhanced the differentiation and osteogenic potential of MC3T3-El cell.

  • PDF

THE EFFECT OF FIBROBLAST GROWTH FACTOR SIGNALING ON CARTILAGE FORMATION (FGF signaling이 연골 형성에 미치는 영향)

  • Park, Choong-Je;Lee, Sang-Won;Nam, Soon-Hyun;Kim, Young-Jin;Ryoo, Hyhn-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.643-653
    • /
    • 2003
  • Fibroblast growth factor (FGF) / FGF receptor (FGFR) mediated signaling is required for skeletogenesis in cluding intramembranous and endochondral ossifications Runx2 ($Cbfa1/Pebp2{\alpha}A/AML3$) is an essential transcription factor for osteoblast differentiation and bone formation. Murine calvaria and mandible are concurrently undergoing both intramembranous bone and cartilage formations in the early developmental stage. However the mechanism by which these cartilage formations are regulated remains unclear. To elucidate the effect of FGF signaling on development of cranial sutural cartilage and Meckel's cartilage and to understand the role of Runx2 in these process, we have done both in vivo and in vitro experiments. Alcian blue staining showed that cartilage formation in sagittal suture begins from embryonic stage 16 (E16), Meckel's cartilage formation in mandible from E12. We analyzed by in situ hybridization the characteristics of cartilage cells that type II collagen, not type X collagen, was expressed in sagittal sutural cartilage and Meckel's cartilage. In addition, Runx2 was not expressed in Meckel's cartilage as well as sagittal sutural cartilage, except specific expression pattern only surrounding both cartilages. FGF signaling pathway was further examined in vitro. Beads soaked in FGF2 placed on the sagittal suture and mandible inhibited both sutural and Meckel's cartilage formations. We next examined whether Runx2 gene lies in FGF siganling pathway during regulation of cartilage formation. Beads soaked in FGF2 on sagittal suture induced Runx2 gene expression. These results suggest that FGF signaling inhibits formations of sagittal sutural and Meckel's cartilages, also propose that FGF siganling is involved in the proliferation and differentiation of chondroblasts through regulating the transcription factor Runx2.

  • PDF

Effect of Hijikia fusiforme Fractions on Proliferation and Differentiation in Osteoblastic MC3T3-E1 Cells (톳 분획물이 조골세포의 증식 및 분화에 미치는 영향)

  • Jeon, Min-Hee;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.300-308
    • /
    • 2011
  • Osteoporosis is a disease involving a decrease in bone mineral density and increased risk of fractures. Osteoblast and osteoclast activities are important for bone formation. The MC3T3-E1 osteoblastic cell line is a well-accepted model of osteogellsis in vitro. Hijikia fusiforme is a kind of edible brown seaweed that grows mainly in the Northwest Pacific region, including the countries of Korea, Japan and China, and it has been widely used as a medicinal and health food in Korea. In this study, by using osteoblasts, the effects of Hijikia fusiforme fractions on proliferation, alkaline phosphatase (ALP) activity, collagen synthesis and mineralization of cells were investigated. Hijikia fusiforme were subjected to fractionation by using hexane, methanol, butanol and aqueous. Proliferation of the MC3T3-E1 osteoblastic cells that were treated with Hijikia fusiforme fractions increased by approximately 120%. Regarding effects of Hijikia fusiforme fractions on ALP activity, 1 ${\mu}g$/ml butanol fraction showed the highest activity. The synthesis of collagen increased significantly in response to treatment with Hijikia fusiforme fractions, with the exception of the hexane fraction. Moreover, mineralization in the MC3T3-E1 cells that were treated with 100 ${\mu}g$/ml butanol fraction increased by 281%. Also, when 100 ${\mu}g$/ml aqueous fraction was added, mineralization increased by 240%. These results indicate that Hijikia fusiforme fractions have anabolic effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases.

The Effects of Prostaglandin and Dibutyryl cAMP on Osteoblastic Cell Activity and Osteoclast Generation (Prostaglandin과 Dibutyryl cAMP가 조골세포의 활성과 파골세포 형성에 미치는 영향)

  • Mok, Sung-Kyu;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.448-468
    • /
    • 1996
  • To maintain its functional integrity, bone is continuously remodelled by a process involving resorption by osteoeclasts and formation by osteoblasts, In order to respond to changes in the physical environment or to trauma with the relevant action, this process is strictly regulated by locally synthesized or systemic fators, Prostaglandin $E_2(PGE_2$) is perhaps one of the best studied factors, having been known to affect bone cell function for several decades.$PGE_2$ has both anabolic and catabolic activities. Excess of $PGE_2$ has been implicated in a number of pathological states associated with bone loss in a number of chronic inflammatory conditions such as periodontal disease and rheumatoid arthritis. $PGE_2$ and other arachidonic acid metabolites have been shown to be potent stimulators of osteoclastic bone resorption in organ culture. The anabolic effects of $PGE_2$ were first noticed when an increase in periosteal woven bone formation was seen after the infusion of $PGE_2$ into infants in order to prevent closure of the ductus arteriosus. The cellular basis for the catabolic actions of $PGE_2$ has been well characterized. $PGE_2$increases osteoclast recruitment in bone marrow cell cultures. Also $PGE_2$ has a direct action on osteoclast serving to inhibit activity and can also indirectly activate osteoclast via other cells in the vicinity, presumably osteoblast. The cellular mechanisms for the anabolic actions of $PGE_2$ are not nearly so well understood. The purpose of this paper was to study the effects of $PGE_2$ and dibutyl(DB)cAMP on osteoblastic clone MC3T3El cells and on the generation of osteoclasts from their precursor cells. The effect of $PGE_2$ and DBcAMP on the induction of alkaline phoaphatase(AlP) was investigated in osteoblastic clone MC3T3El cells cultured in medium containing 0.4% fetal bovine serum. $PGE_2$ and DBcAMP stimulated ALP activity and MTT assay in the cells in a dose-dependent manner at concentrations of lO-SOOng/ml. Cycloheximide, protein synthesis inhibitor, inhibited the stimulative effect of $PGE_2$ and DBcAMP on ALP activity in the cells. $PGE_2$also increased the intracellular cAMP content in a dose-dependent fashion with a maximal effect at 500ng/ml. The effect of $PGE_2$ on the generation of osteoclasts was investigated in a coculture system of mouse bone marrow cells with primary osteoblastic cells cultured in media containing 10% fetal bovine serum.After cultures, staining for tartrate-resistant acid phosphatase(TRAP)-marker enzyme of osteoclast was performed. The TRAP(+) multinucleated cells(MNCs), which have 3 or more nuclei, were counted. More TRAP(+) MNCs were formed in coculture system than in control group. $PGE_2(10^{-5}10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in culture. $PGE_2(10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in coculture of osteoblastic clone MC3T3E1 cells This results suggest that $PGE_2$ stimulates the differentiation of osteoblasts and generation of osteoclast, and are involved in bone formation, as well as in bone resorption.

  • PDF

ROS Scavenging Effect and Cell Viability of Opuntia humifusa Extract on Osteoblastic MC3T3-E1 Cells (천년초 추출물이 조골세포의 증식과 ROS소거능에 미치는 영향)

  • Hwang, Hyun-Jung;Jung, Bok-Mi;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1752-1760
    • /
    • 2011
  • In this study, the effect of the Opuntiahumifusa extracts on proliferation, alkaline phosphatase (ALP) activity, collagen synthesis and ROS level of a cell was investigated using an osteoblast. Opuntiahumifusawas separated intoOpuntiahumifusapeel (OH-P), seed (OH-Se) and stem (OH-St).These were subjected to extraction by using hot water and ethanol. The proliferation of the MC3T3-E1 osteoblastic cells that were treated with OH-Se water extract were increased by approximately 120%. Regarding the effects of OH-Se on ALP activity, the $50{\mu}g/ml$ ethanol extract group showed the highest activity. The synthesis of collagen increased significantly in response to treatment with OH-Se water extract. The ROS scavenging effects of Opuntiahumifusawere investigated for involvement of oxidativedamage, cell culture and staining. Also, when OH-Se water extract $100{\mu}g/ml$ was added, the ROS level decreased by 54%. These results indicate that Opuntiahumifusa extracts have an anabolic effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases.