• 제목/요약/키워드: osteoblast activities

Search Result 84, Processing Time 0.029 seconds

Comparison of osteogenic efficacy depending on implant preparation in autograft (자가골 이식에서 이식골편의 처리방법에 따른 골형성능력 비교)

  • Lee, Jong-Il;Song, Ha-Na;Kim, Nam-soo;Choi, In-hyuk
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.1
    • /
    • pp.117-125
    • /
    • 2007
  • Bone graft had been investigated previously to restore bone defects in orthopedics. The purpose of this study was to investigate the efficacy on new bone formation in bone autografts by treatment of implants. Cortical bone autografts were transplanted to midshaft of diaphyseal fibulae of 9 rabbits which were divided in 3 groups according to the treatment method of implants. Cortical bone implants for graft were treated with 3 different methods; freezing, freeze-drying, defat-freezing. Autografts were achieved by cross-transplantation method to bilateral fibulae of the presented rabbits after implant treatment procedures. The grafted regions of fibulae of all groups had been radiographed biweekly for 16 weeks to observe new bone formation and union between donor and recipient bone in the grafted region. Bone alkaline phosphatase (BALP) in all groups was evaluated biweekly till the end of the experiment to determine osteoblast activities. Unions of the experimental grafted regions were observed at 83% (5 of 6 cases) of freezing, 17% (1 of 6 cases) of freeze-drying and 67% (4 of 6 cases) of defat-freezing autografts, respectively. BALP was increased over 100% after 2 weeks of graft procedures in all union cases (all cases in freezing group and in defat-freezing group, and 1 of 3 in freeze-drying group, respectively), then gradually decreased from 4 th week of graft to 16 th week. In non-union cases, there is no significant variation in BALP value until the end of experiment. It is speculated that defat-freezing method of treatments of implants is more safe to preserve the osteogenic ability in autograft than freeze-drying method.

Comparison of osteoinductive efficacy of freezing, freeze-drying and defat-freezing implant preparation for allograft in rabbit (토끼 동종골이식에서 이식골편의 동결법, 동결건조법, 탈지 후 동결법 처리에 따른 신생골 형성능력 비교)

  • Lee, Jong-Il;Song, Ha-Na;Kim, Nam-soo;Choi, In-hyuk
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.219-228
    • /
    • 2007
  • Bone allograft had been increased the need because autogenous bone graft is associated with donor site morbidity and is restricted in quantity. The bone allograft implants have to prepare properly for increasing osteoinductive ability and decreasing immune responses before providing to graft. The purpose of this study was to investigate the efficacy on new bone formation in bone allografts by treatment of implants. Cortical bone allografts were transplanted to experimental defects on midshaft of diaphyseal fibulae in 15 rabbits, which were divided to 3 experimental groups according to the preparation methods-freezing, freeze-drying, defat-freezing. The grafted regions of fibulae of all groups had been radiographed biweekly for 16 weeks to observe new bone formation and union between implant and recipient bone. Bone Alkaline Phosphatase (BALP) in all groups was evaluated biweekly till the end of the experiment to determine osteoblast activities. Unions between implant and recipient bone were observed at 30% (3 of 10 cases) of freezing, 50% (5 of 10 cases) of freeze-drying and 80% (8 of 10 cases) of defat-freezing. BALP was increased over 100% from before graft at 2 weeks of graft procedures in all union cases of freezing and defat-freezing group, then gradually decreased till 16th week. In non-union cases, there is no significant variation in BALP value. Defat-freezing method for allograft implants might be more effective for osteoinductive efficacy of implants than freezing and freeze-drying method.

Effects of Ethyl Acetate Extract of Poncirus trifoliata Fruit for Glucocorticoid-Induced Osteoporosis

  • Yoon, Hyung-Young;Cho, Yun-Seok;Jin, Qinglong;Kim, Hyun-Gyu;Woo, Eun-Rhan;Chung, Yoon-Sok
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.89-95
    • /
    • 2012
  • Poncirus trifoliata fruit (PTF) affects the digestive and cardiovascular systems, and kidney function. The authors studied the effects of ethyl acetate (EtOAc) extract of PTF on the activities of osteoblasts and in an animal model. The main compounds of the EtOAc extract, naringin and poncirin have been confirmed by HPLC and NMR analysis. Effects of osteoblastic differentiation were measured by alkaline phosphatase (ALP) activity, osteopontin (OPN) protein expression and osteoprotegerin (OPG) mRNA expression in MC3T3-E1 cells. Also, osteoclast differentiation was measured by multinucleated cells (MNCs) formation through tartrate resistance acid phosphatase (TRAP)-positive staining. Bone mineral density (BMD) was measured before and after treatment with EtOAc extract of PTF in prednisolone-induced osteoporotic mice. Dexamethasone (DEX) decreased OPN and OPG expression level in MC3T3-E1 cells and ALP activity was decreased by DEX dose-dependently. EtOAc extract of PTF recovered the levels of ALP activity, and the expression of OPN and OPG in MC3T3-E1 cells treated with DEX. In osteoclast differentiation, multinucleated TRAP-positive cell formation was significantly suppressed by the EtOAc extract of PTF. Total body BMD was restored by EtOAc extract of PTF in prednisolone-induced osteoporotic mice. In conclusion, EtOAc extract of PTF recovered DEX-mediated deteriorations in osteoblastic and osteoclastic functions, and increased BMD in glucocorticoid-induced osteoporosis.

The Effect of Platelet Rich Plasma Combined with Bovine Bone on the Treatment of Grade II Furcation Defects in Beagle Dogs (혈소판 농축 혈장이 치근이개부 병변에 미치는 효과)

  • Jung, Min-Sub;Lim, Sung Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.803-814
    • /
    • 2000
  • Current acceptable methods of promoting periodontal regeneration are basis of removal of diseased soft tissue, root treatment, guided tissue regeneration, graft materials, biological mediators. Platelet Rich Plasma have been reported as a biological mediator which regulate activities of wound healing progress including cell proliferation, migration, and metabolism. The purpose of this study is to evaluate the possibility of using the Platelet Rich Plasma as a regeneration promoting agent for furcation involvement defect. Five adult beagle dogs were used in this experiment. With intrasulcular and crestal incision, mucoperiosteal flap was elevated. Following decortication with 1/2 high speed round bur, degree II furcation defect was made on mandibular third(P3), forth(P4) and fifth(P5) premolar. 2 month later experimental group were PRP plus bovine bone and bovine bone only. After 4, 8 weeks, the animals were sacrificed by perfusion technique. Tissue block was excised including the tooth and prepared for light microscope with Gomori's trichrome staining. At 4 weeks after surgery, there were rapid osteogenesis phenomenon on the defected area of the Platelet Rich Plasma plus bovine bone group and early trabeculation pattern was made with new osteoid tissue produced by activated osteoblast. Bone formation was almost completed to the fornix of furcation by 4 weeks after surgery. In conclusion, Platelet Rich Plasma can promote rapid osteogenesis during early stage of periodontal tissue regeneration.

  • PDF

SPA0355 prevents ovariectomy-induced bone loss in mice

  • Kim, Sang Hoon;Zhang, Zhongkai;Moon, Young Jae;Park, Il Woon;Cho, Yong Gon;Jeon, Raok;Park, Byung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • Estrogen withdrawal in post-menopausal women leads to overactivation of osteoclasts, which contributes to the development of osteoporosis. Inflammatory cytokines are known as one of mechanisms of osteoclast activation after estrogen deficiency. SPA0355 is a thiourea derivative that has been investigated for its antioxidant and anti-inflammatory activities. However, its efficacy in bone resorption has not been previously investigated. The aim of this study was to investigate the impact of SPA0355 on the development of osteoporosis and to explore its mode of action. In vitro experiments showed that SPA0355 inhibited receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages. This effect appears to be independent of estrogen receptor activation as ICI 180,782 failed to abrogate its effects on osteoclasts. Further signaling studies revealed that SPA0355 suppressed activation of the MAPKs, Akt, and $NF-{\kappa}B$ pathways. SPA0355 also increased osteoblastic differentiation, as evidenced by its effects on alkaline phosphatase activity and mineralization nodule formation. Intraperitoneal administration of SPA0355 to ovariectomized mice prevented bone loss, as verified by three-dimensional images and bone morphometric parameters derived from ${\mu}CT$ analysis. Noticeably, SPA0355 did not show hepatotoxicity and nephrotoxicity and also had little effect on hematological parameters. Taken together, the results indicate that SPA0355 may protect against bone loss in ovariectomized mice by stimulation of osteoblast differentiation and by inhibition of osteoclast resorption. Therefore, SPA0355 is a safe and potential candidate for management of postmenopausal osteoporosis.

Boeravinone B, a natural rotenoid, inhibits osteoclast differentiation through modulating NF-κB, MAPK and PI3K/Akt signaling pathways

  • Xianyu Piao;Jung-Woo Kim;Moonjung Hyun;Zhao Wang;Suk-Gyun Park;In A Cho;Je-Hwang Ryu;Bin-Na Lee;Ju Han Song;Jeong-Tae Koh
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.545-550
    • /
    • 2023
  • Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomy-induced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis.

Effects of Caffeine and calcium on the activities of the mouse osteoblastic cells (카페인과 칼슘이 골모 세포의 활성에 미치는 영향)

  • Chun, Youn-Sic;Baik, Hye-Jung
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.129-142
    • /
    • 2002
  • The purpose of this study was to evaluate the effects of caffeine and calcium on the activities of the osteoblastic cell from mouse calvaria. The author cultured osteoblastic cells obtained from the mouse calvaria and were divided into three groups : the caffeine-treated, the calcium-treated and the combine-treated group. In caffeine-treated group, the cell toxicity was measured by MTT assay at 1, 2 and 4 days after treatment of caffeine. In all groups, the densities of the mineralized bone nodules were measured by imaging analyzer after Von Kossa staining. The alkaline phosphotase (ALP) activities were measured at 2, 7, 14, 21 and 28 days and the interleukin-1 ${\beta}$ activities at 48 hours after treatment of caffeine and calcium. The measurements were statistically executed with ANOVA test and the results were as follows. 1. The cellular toxicity of the caffeine increased with the concentration of caffeine during the incubation period. 2. The maximum densities of mineralization were observed at 0.2 mM caffeine-treated group, 1.2 mM calcium-treated group, 0.1 mM caffeine and 1.8 mM calcium-treated group. 3. The activities of ALP were peaked at 14 days at calcium-treated group as no-treated. But, the activities of ALP increased with concentrations of caffeine at caffeine-treated group. At combine-treated group, the act of ALP were peaked at 24 days at 1.2 mM, 1.8 mM calcium-treated group, But decreased at 2.5 mM calcium-treated group. 4. The activites of the IL-1 ${\beta}$ were increased significantly at 0.2 mM caffeine-treated group, 1.8 mM calcium-treated group and 0.1 mM caffeine and 1.8 mM calcium-treated group. But, they were decreased at all groups of high concentration.

The Effect of the IGF-I treated Gingival and Periodontal Ligament Fibroblast on Osteoblasts (IGF-I으로 처리한 치은 및 치주인대 섬유모세포가 골모세포에 미치는 영향)

  • Kim, Mi-Jeong;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.589-600
    • /
    • 2001
  • Insulin-like growth factor I (IGF-I) has the local tissue regulating actions. In bone, IGF-I increases the replication of osteoblastic lineage, probably preosteoblasts, and enhances osteoblastic collagen synthesis and matrix composition rates. The purpose of this study was to investigate the local regulatory effect of IGF-I on periodontium totally, both in an autocrine and paracrine manner. To examine the effect of IGF-I directly on osteoblast (OB) of test rats, and indirectlv on OB via periodontal ligament fibroblast (PDLF), and the effect of gingival fibroblast (GF) on OB via cellular paracrine manner for the understanding of humoral action of adjacent tissue, GF and PDLF were obtained from male Sprague-Dawley rats of six to eight weeks of age. OB was obtained iron frontal and parietal calvarial bone of Sprague-Dawley 21day-old-fetus. After each tell was Incubated 24 hours, for collecting conditioned medium, different concentrations of IGF-I (1,10,100 ng/ml,1ml/well) was adding in the GF, PDLF cells, and the supernatant from these cultures was put into the primary OB culture with $1{\times}10^4$cell/ml/well. The experimental group was divided into six groups control OB, IGF-I treated OB, OB culture with conditioned medium from PDLF, OB culture with conditioned medium from IGF-I treated PDLF, OB culture with conditioned medium from GF, OB culture with conditioned medium from IGF-I treated GF. After final IGF-I treatment, OB was Incubated for 24 hours, and alkaline phosphatase activity assay, BMP expression, cell proliferation measurement using MTT assay, total protein measurement, Collagen synthesis assay using western blot, and examination of bone nodule synthesis were done. Alkaline phosphatase expressions were increased in the group of PDLF-IGF-I supernatant treatment. Direct IGF-I treatment with concentrations of 100ng/m1 showed increased viable tell number measured by MTT assay. And IGF-I treatment did not increase total protein amount. The entire experimental group showed BMP2, 4 expression in western blot, and there was no significant difference between control and experimental groups. These results suggested that supernatant from PDLF effects on increasing cellular activities of OB regardless of IGF-I, and at high concentration, IGF-I increases OB tell proliferation.

  • PDF

The Effect of Platelet Derived Growth Factor - BB Loaded Chitosan/Calcium Metaphosphate on Bone Regeneration (혈소판유래성장인자를 함유한 Chitosan/Calcium Metaphosphate의 골조직재생효과에 관한 연구)

  • Lee, Seung-Yeol;Seol, Yang-Jo;Lee, Yong-Moo;Lee, Ju-Yeon;Lee, Seung-Jin;Kim, Suk-Young;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.1-23
    • /
    • 2001
  • Chitosan is biodegradable natural polymer that has been demonstrated its ability to improve wound healing, and calcium metaphosphate(CMP) is a unique class of phosphate minerals having a polymeric structure. In this study, chitosan/CMP and platelet derived growth factor(PDGF-BB) loaded chitosan/CMP sponges were developed, and the effect of the sponges on bone regeneration and their possibility as scaffolds for bone formation by three-dimensional osteoblast culture were examined. PDGF-BB loaded chitosan/CMP sponges were prepared by freeze-drying of a mixture of chitosan solution and CMP powder, and soaking in a PDGF-BB solution. Fabricated sponge retained its 3-dimensional porous structure with $100-200\;{\mu}m$ pores. The release kinetics of PDGF-BB loaded onto the sponge were measured in vitro with $^{125}I-labeled$ PDGF-BB. In order to examine their possibility as scaffolds for bone formation, fetal rat calvarial osteoblastic cells were isolated, cultured, and seeded into the sponges. The cell-sponge constructs were cultured for 28 days. Cell proliferation, alkaline phosphatase activity were measured at 1, 7, 14 and 28 days, and histologic examination was performed. In order to examine the effect on the healing of bone defect, the sponges were implanted into rat calvarial defects. Rats were sacrificed 2 and 4 weeks after implantation and histologic and histomorphometrical examination were performed. An effective therapeutic concentration of PDGF-BB following a high initial burst release was maintained throughout the examination period. PDGF-BB loaded chitosan/CMP sponges supported the proliferation of seeded osteoblastic cells as well as their differentiation as indicated by high alkaline phosphatase activities. Histologic findings indicated that seeded osteoblastic cells well attached to sponge matrices and proliferated in a multi-layer fashion. In the experiments of implantation in rat calvarial defects, histologic and histomorphometric examination revealed that chitosan/CMP sponge promoted osseous healing as compared to controls. PDGF-BB loaded chitosan/CMP sponge further echanced bone regeneration. These results suggested that PDGF-BB loaded chitosan/CMP sponge was a feasable scaffolding material to grow osteoblast in a three-dimentional structure for transplantation into a site for bone regeneration.

  • PDF

Effects of Eisenia bicyclis Extracts on the Proliferation and Activity of Osteoblasts and Osteoclasts (대황 추출물이 조골세포와 파골세포의 성장과 활성에 미치는 영향)

  • Kim, Seoyeon;Jeon, Myeong-Jeong;Cheon, Jihyeon;Lee, Sang-Hyeon;Kong, Changsuk;Kim, Yuck Yong;Yu, Ki Hwan;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.297-303
    • /
    • 2014
  • The effects of Eisenia bicyclis extracts on osteoblast differentiation and osteoclast formation were investigated. The proliferation of MC3T3-E1 osteoblastic cells was tested in an MTT assay. Treatment with E. bicyclis ethanol extract increased cell proliferation by approximately 128% at a concentration of 10 ${\mu}g/ml$. The ALP activities in the MC3T3-E1 cells was 179% higher when the E. bicyclis ethanol extract was processed at a concentration of 50 ${\mu}g/ml$. The proliferation of RAW 264.7 osteoclastic cells decreased significantly in response to treatment with the E. bicyclis extracts. Moreover, the proliferation of the RAW 264.7 osteoclastic cells treated with E. bicyclis hot water extract decreased by nearly 80%. In addition, the E. bicyclis extract reduced the number of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells from osteoclastic RAW 264.7 cells. These results indicate that E. bicyclis extracts have an anabolic effect on bone through the promotion of osteoclast differentiation and suggest that the extracts could be used in the treatment of common metabolic bone diseases.