• Title/Summary/Keyword: osseointegration.

Search Result 402, Processing Time 0.024 seconds

Cellular activities of osteoblast-like cells on alkali-treated titanium surface (알칼리 처리된 타이타늄 표면에 대한 골아 유사세포의 세포 활성도)

  • Park, Jin-Woo;Lee, Deog-Hye;Yeo, Shin-Il;Park, Kwang-Bum;Choi, Seok-Kyu;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.427-445
    • /
    • 2007
  • To improve osseointegration at the boneto-implant interface, several studies have been carried out to modify titanium surface. Variations in surface texture or microtopography may affect the cellular response to an implant. Osteoblast-like cells attach more readily to a rougher titanium surface, and synthesis of extracellular matrix and subsequent mineralization were found to be enhanced on rough or porous coated titanium. However, regarding the effect of roughened surface by physical and mechanical methods, most studies carried out on the reactions of cells to micrometric topography, little work has been performed on the reaction of cells to nanotopography. The purpose of this study was to examme the response of osteoblast-like cell cultured on blasted surfaces and alkali treated surfaces, and to evaluate the influence of surface texture or submicro-scaled surface topography on the cell attachment, cell proliferation and the gene expression of osteoblastic phenotype using ROS 17/2.8 cell lines. In scanning electron micrographs, the blasted, alkali treated and machined surfaces demonstrated microscopic differences in the surface topography. The specimens of alkali treatment had a submicro-scaled porous sur-face with pore size about 200 nm. The blasted surfaces showed irregularities in morphology with small(<10 ${\mu}m$) depression and indentation among flatter-appearing areas of various sizes. Based on profilometry, the blasted surfaces was significantly rougher than the machined and the alkali treated surfaces (p$TiO_2$) were observed on alkali treated surfaces, whereas not observed on machined and blasted surfaces. The attachment morphology of cells according to time was observed by the scanning electron microscope. After 1 hour incubation, the cells were in the process of adhesion and spreading on the prepared surfaces. After 3 hours, the cells on all prepared surfaces were further spreaded and flattened, however on the blasted and alkali treated surfaces, the cells exhibited slightly irregular shapes and some gaps or spaces were seen. After 24 hours incubation, most cells of the all groups had a flattened and polygonal shape, but the cells were more spreaded on the machined surfaces than the blasted and alkali treated surfaces. The MTT assay indicated the increase on machined, alkali treated and blasted surfaces according to time, and the alkali treated and blasted surfaces showed significantly increased in optical density comparing with machined surfaces at 1 day (p<0.01). Gene expression study showed that mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin of the osteoblast-like cells showed a tendency to be higher on blasted and alkali treated surfaces than on the machined surfaces, although no siginificant difference in the mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin was observed among all groups. In conclusion, we suggest that submicroscaled surfaces on osteoblast-like cell response do not over-ride the one of the surface with micro-scaled topography produced by blasting method, although the microscaled and submicro-scaled surfaces can accelerate osteogenic cell attachment and function compared with the machined surfaces.

Clinical and radiographic evaluation of $Neoplan^{(R)}$ implant with a sandblasted and acid-etched surface and external connection (SLA 표면 처리 및 외측 연결형의 국산 임플랜트에 대한 임상적, 방사선학적 평가)

  • An, Hee-Suk;Moon, Hong-Suk;Shim, Jun-Sung;Cho, Kyu-Sung;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.125-136
    • /
    • 2008
  • Statement of problem: Since the concept of osseointegration in dental implants was introduced by $Br{{\aa}}nemark$ et al, high long-term success rates have been achieved. Though the use of dental implants have increased dramatically, there are few studies on domestic implants with clinical and objective long-term data. Purpose: The aim of this retrospective study was to provide long-term data on the $Neoplan^{(R)}$ implant, which features a sandblasted and acid-etched surface and external connection. Material and methods: 96 $Neoplan^{(R)}$ implants placed in 25 patients in Yonsei University Hospital were examined to determine the effect of the factors on marginal bone loss, through clinical and radiographic results during 18 to 57 month period. Results: 1. Out of a total of 96 implants placed in 25 patients, two fixtures were lost, resulting in 97.9% of cumulative survival rate. 2. Throughout the study period, the survival rates were 96.8% in the maxilla and 98.5% in the mandible. The survival rates were 97.6% in the posterior regions and 100% in the anterior regions. 3. The mean bone loss for the first year after prosthesis placement and the mean annual bone loss after the first year for men were significantly higher than that of women (P<0.05). 4. The group of partial edentulism with no posterior teeth distal to the implant prosthesis showed significantly more bone loss compared to the group of partial edentulism with presence of posterior teeth distal to the implant prosthesis in terms of mean bone loss for the first year and after the first year (P<0.05). 5. The mean annual bone loss after the first year was more pronounced in posterior regions compared to anterior regions (P<0.05). 6. No significant difference in marginal bone loss was found in the following factors: jaws, type of prostheses, type of opposing dentition, and submerged /non-submerged implants (P<0.05). Conclusion: On the basis of these results, the factors influencing marginal bone loss were gender, type of edentulism, and location in the arch, while the factors such as arch, type of prostheses, type of opposing dentition, submerged / non- submerged implants had no significant effect on bone loss. In the present study, the cumulative survival rate of the $Neoplan^{(R)}$ implant with a sandblasted and acid-etched surface was 97.9% up to a maximum 57-month period. Further long-term investigations for this type of implant system and evaluation of other various domestic implant systems are needed in future studies.