• Title/Summary/Keyword: osmotic adjustment

Search Result 22, Processing Time 0.021 seconds

Changes in Photosynthetic Performance and Water Relation Parameters in the Seedlings of Korean Dendropanax Subjected to Drought Stress (건조 스트레스에 따른 황칠나무 유묘의 광합성과 수분특성인자 변화)

  • Lee, Kyeong Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • Background: This study aimed to investigate out the influence of drought stress on the physiological responses of Dendropanax morbifera seedlings. Methods and Results: Drought stress was induced by discontinuing water supply for 30 days. Under drought stress, photosynthetic activity was significantly reduced with decreasing soil water content (SWC), as revealed by the parameters such as Fv/Fm, maximum photosynthetic rate ($P_{N\;max}$), stomatal conductance ($g_s$), stomatal transpiration rate (E), and intercellular $CO_2$ concentration (Ci). However, water use efficiency (WUE) was increased by 2.5 times because of the decrease in $g_s$ to reduce transpiration. Particularly, E and $g_s$ were remarkably decreased when water was withheld for 21 days at 6.2% of SWC. Dendropanax morbifera leaves showed osmotic adjustment of -0.30 MPa at full turgor and -0.13 MPa at zero turgor. In contrast, the maximum bulk modulus of elasticity ($E_{max}$) did not change significantly. Thus, Dendropanax morbifera seedlings could tolerate drought stress via osmotic adjustment. Conclusions: Drought avoidance mechanisms of D. morbifera involve reduction in water loss from plants, through the control of stomatal transpiration, and reduction in cellular osmotic potential. Notably photosynthetic activity was remarkably reduced, to approximately 6% of the SWC.

Nitrate Metabolism Affected by Osmotic Stress and Nitrate Supply Level in Relation to Osmoregulation

  • Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2000
  • Eight-week old perennial ryegrass (Lolium perenne L. cv. Reveille) plants were exposed to different NO3-concentrations or osmotic stress with NaCI. Previously labeled "N was chased during 14 days of non-labeled'NO3 feeding in order to investigate NO3 metabolism in relation to osmoregulation. The short termmeasurement of osmotic potential showed that the extemal concentration of Nos- had not great effect on theosmotic potential, but that osmotic adjustment was observed in NaCl-treated plants. Total uptake of NO 3 - waslargely increased by increasing supply level of NO3 while it was depressed by exposing to osmotic stress.Nitrate reduction increased to more than 29% by increasing extemal NO,- concentration from 1 mM to 10mM. When osmotically stressed with NaCI, nitrate reduction was depressed to about 37% as compared to thecontrol. The decrease in translocation of reduced N into leaves was also observed in NaCl exposed plants. Inthe medium exposed to 10 mM NO,., osmotic contribution of nitrate to cumulative osmotic potential wasdecreased, and it was osmotically compensated with soluble carbohydrate. When osmotically stressed withNaC1, the contribution of chloride was much higher than that of nitrate. The present data indicate that N03-in plant tissues, factually affected by the assimilation of this ion, plays an active role in osmotic regulation incorrelation with other osmotica such carbohydrate and chloride.(Key words : Nitrate metabolism, Osmotic stress, Nitrate supply level, Osmoregulation)ate supply level, Osmoregulation)

  • PDF

Comparative Water Relations of Two Vitis vinifera Cultivars, Riesling and Chardonnay

  • Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.223-226
    • /
    • 2001
  • The leaf water relations and photosynthetic rate during acute soil drying were compared in potgrown grapevine cultivars, Vitis vinifera cv. Chardonnay and V. vinifera cv. Riesling. Leaf water potential in Riesling decreased significantly from day 2 after water had been withheld, while in Chardonnay leaf water potential for the water-stressed plants was almost identical with that in well watered plants during the first 4 days. Higher stomatal conductance and photosynthetic rate in Chardonnay than Riesling were observed until day 3 after withholding water. Photosynthetic rate in water-stressed Chardonnay was not different from that in control plants until day 3 after withholding water, while that in water-stressed Riesling was reduced markedly from day 2. In Riesling, osmotic potential at turgor loss point was not changed irrespective of watering conditions. However, in Chardonnay osmotic potential at turgor loss point decreased more in the water stressed conditions than in well watered conditions. The osmotic adjustment in Chardonnay under water stress conditions must contribute to the maintenance of higher stomatal conductance and photosynthetic rate than those in Riesling for a significant period of the drying process. Though difference in stomatal conductance between the two cultivars was shown in the process of soil drying, stomatal conductance of both cultivars responded to vapor pressure difference between leaf and ambient air, rather than soil water status and leaf water potential.

  • PDF

Comparison of Adjustments to Drought Stress Among Seedlings of Several Oak Species

  • Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.343-347
    • /
    • 1994
  • In order to compare the adjustment of 6 oak species to water stress, the components of water status, tissue elastic modulus, free proline content of leaves and morphological characteristics were determined in pot culture. uercus dentata and . mongolica responded effectively to drought with high root : shoot (R/S) ratio or maintenance of high turgor pressure by large and fast osmotic adjustment and . variabilis with maintenance of high turgor pressure by low elastic modulus under drought. Meanwhile, . aliena and . serrata responded effectively with low omotic potential (Ψo) at full saturation and . acutissima with long root in spite of rigid cell wall and high osmotic potential (Ψo) at full saturation. Proline content in leaves of . dentata, . mongolica and . aliena increased early and rapidly at high leaf water potential (Ψleaf). The results indicate that 6 oak species have adjustment different from each other to water stress.

  • PDF

Responses of Transgenic Tobacco Plants Overexpressing Superoxide Dismutase and Ascorbate Peroxidase in Chloroplasts to Water Stress (Superoxide Dismutase와 Ascorbate Peroxidase를 엽록체에 과발현하는 형질전환 담배의 수분스트레스에 대한 반응)

  • 최선미;권석윤;곽상수;박용목
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.79-84
    • /
    • 2001
  • To assess resistance of transgenic tobacco plants which overexpress superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts to water stress, changes in leaf water potential, turgor potential, stomatal conductance and transpiration rate were measured. Leaf water potential in all plants remained high up to day 4 after withholding water but thereafter decreased markedly. In spite of a remarkable decrease in leaf water potential, some of transgenic plants maintained higher turgor potential compared with control plant on day 12. In particular, the transgenic plant expressing MnSOD showed an outstanding maintenance in turgor pressure by osmotic adjustment throughout the experiment, resulting in high stomatal conductance and transpiration rate. However, among transgenic plants, osmotic potential was reduced more effectively in multiple transformants such as the double transformant expressing both MnSOD and APX, and the triple transformant expressing CuznSOD, MnSOD and APX than single transformants. Consequently, further research is needed to get general agreement on the tolerance of transgenic plants to water stress at different growth stages for each transgenic plant.

  • PDF

Studies on the Leaf Photosynthesis of Salt-Stressed Rice Cultivars (염류처리에 따른 벼의 개엽광합성에 관한 연구)

  • 조동하
    • Korean Journal of Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1994
  • The effects of NaCl salinity on the leaf photosynthesis and water relation of two cultivars of rice(Oryza sativa L.) , the salt-tolerant cultivar Seohae and the salt-senstive cultivar Iri-380 were exam-ined. Two cultivars of rice were grown for 14 days in nutrient solution at SOmM NaCl. Comparing theieaf Na content of two cultlvars, Seohae showed high accumulation of Na content in the leaf blade, while Iri-380 showed low. The Na content in leaf blade reduced the rate of leaf photosynthesis. Salt-tolerant cultivar Seohae was less decreased the rate of leaf photosynthesis than salt- sensitive cultivarIri-380. And Seohae showed larger decreased the osmotic potential in the leaves than Iri-380. This in-dicates that in the salt-tolerant cultivar, osmotic adjustment is developed under saliniEation.

  • PDF

A Numerical Study on Electro-osmotic Flow and Stirring Characteristics in a Microchannel with Local Adjustment of Electric Potential (마이크로 채널 내 국소적 전위 인가에 따른 전기삼투 유동 및 혼합 특성에 대한 수치해석적 연구)

  • Suh Yong-Kweon;Heo Hyeng-Seok
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • In this study a newly designed electro-osmotic micro-mixer is proposed. This study is composed of a channel and metal electrodes attached locally on the side wall surface ultimately to control the mixing effect. To obtain the flow patterns, numerical computation was performed by using a commercial code, CFD-ACE. The fluid-flow solutions are the cast into studying the characteristics of stirring in terms of the mixing index. It was shown that the local control of the electric potential can indeed contribute to the enhancement of mixing effect.

  • PDF

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Comparative Water Relations of Quercus acuta and Castanopsis cuspidata var sieboldii in Early Winter (붉가시나무(Quercus acuta)와 구실잣밤나무(Castanopsis cuspidata var, sieboldii)의 초겨울 비교 수분 관계)

  • Park, Bum-Jin;Park, Yong-Sam;Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • v.28 no.4
    • /
    • pp.231-235
    • /
    • 2005
  • Comparative water relations of Quercus acuta and Castanopsis cuspidata var, sieboldii were analyzed to assess their resistance to drought and low temperature stresses from early November to early December, As air temperature decreased both species showed an increased content of osmotically active solute concentration per unit of dry weight (NS/DW), leading to lower osmotic potential of both species at both full turgid state $(OP_{sat})$ and turgor loss point $(OP_{tlp})$ in December than November. No major difference in the ability to adjust osmotically was noticed between the two. This finding suggests that both species must respond adaptively under water and low temperature stresses to maintain turgor pressure in winter season. In addition to osmotic adjustment, a low bulk modulus of elasticity $(E_{max})$ shown in Castanopsis cuspidata var. sieboldii must also play an important role in turgor maintenance during winter season being apt to happen water and low temperature stresses in plants.

Enhanced Resistance of Transgenic Sweetpotato (Ipomoea batatas Lam.) Plants to Multiple Environmental Stresses Treated with Combination of Water Stress, High Light and High Temperature Stresses

  • Song, Sun-Wha;Kwak, Sang-Soo;Lim, Soon;Kwon, Suk-Yoon;Lee, Haeng-Soon;Park, Yong-Mok
    • Journal of Ecology and Environment
    • /
    • v.29 no.5
    • /
    • pp.479-484
    • /
    • 2006
  • Ecophysiological parameters of non-transgenic sweetpotato (NT) and transgenic sweetpotato (SSA) plants were compared to evaluate their resistance to multiple environmental stresses. Stomatal conductance and transpiration rate in NT plants decreased markedly from Day 6 after water was withheld, whereas those values in SSA plants showed relatively higher level during this period. Osmotic potential in SSA plants was reduced more negatively as leaf water potential decreased from Day 8 after dehydration treatment, while such reduction was not shown in NT plants under water stressed condition. SSA plants showed less membrane damage than in NT plants. As water stress and high light stress, were synchronously applied to NT and SSA plants maximal photochemical efficiency of PS II ($F_v/F_m$) in NT plants markedly decreased, while that in SSA plants was maintained relatively higher level. This trend of changes in $F_v/F_m$ between SSA plants and NT plants was more conspicuous as simultaneously treated with water stress, high light and high temperature stress. These results indicate that SSA plants are more resistive than NT plants to multiple environmental stresses and the enhanced resistive characteristics in SSA plants are based on osmotic adjustment under water stress condition and tolerance of membrane.