• Title/Summary/Keyword: osmium

Search Result 110, Processing Time 0.027 seconds

Synthesis of a New Cathode Redox Polymer for High Performance in Biofuel Cells

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2803-2808
    • /
    • 2014
  • High potential and fast electron transfer of a cathode mediator are significant factors for improving the performance of biofuel cells. This paper reports the first synthesis of a cathode redox polymer that is a coordination complex of poly (acrylic acid-vinylpyridine-acryl amide) (PAA-PVP-PAA) and [Os(4,4'-dicarboxylic acid-2,2'-bipyridine)$_2Cl_2]^{/+}$ ($E^{\circ}=0.48V$ versus Ag/AgCl). Bilirubin oxidase can be easily incorporated into this polymer matrix, which carried out the four-electron oxygen under typical physiological conditions (pH 7.2, 0.14 M NaCl, and $37^{\circ}C$). This new polymer showed an approximately 0.1 V higher redox potential than existing cathode mediators such as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. In addition, we suggest increasing the polymer solubility with two hydrophilic groups present in the polymer skeleton to further improve fast electron transfer within the active sites of the enzyme. The maximum power density achieved was 60% higher than that of PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. Furthermore, high current density and electrode stability were confirmed for this osmium polymer, which makes it a promising candidate for high-efficiency biofuel cells.

Simple Electrochemical Immunosensor for the Determination of Rabbit IgG Using Osmium Redox Polymer Films

  • Choi, Young-Bong;Lee, Seung-Hwa;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.229-232
    • /
    • 2007
  • An amperometric immunosensor for the determination of rabbit IgG is proposed. The immunoassay utilizes a screen-printed carbon electrode on which osmium redox polymer is electrodeposited. This immunoassay detects 0.1 ng/ml of rabbit IgG, which is ${\sim}10^2$ fold higher than the most sensitive enzyme amplified amperometric immunoassay. The assay utilizes a screen-printed carbon electrode which was pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a rabbit IgG. The rabbit IgG in the electron conducting film conjugates captures, when present, the anti-rabbit IgG. The captured anti-rabbit-IgG is labeled with horseradish peroxidase (HRP) which catalyzes the two-electron reduction of $H_2O_2$ to water. Because the redox hydrogel electrically connects HRP reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electro-catalytic for the reduction of $H_2O_2$ to $H_2O$ when the electrode is poised at 200 mV vs. Ag/AgCl.

Technology for the Recovery of Os and Ru from Primary/Secondary Resources (1차(次)/2차(次) 자원(資源)으로부터 Os과 Ru 회수기술(回收技術))

  • Sun, Pan-Pan;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.3-11
    • /
    • 2012
  • Some methods used for the recovery of osmium and ruthenium from primary/secondary sources are reviewed. Both Ru and Os could form volatile oxides which enable their separation from the other PGMs by distillation as a traditional method. In hydrochloric acid solution, they also form chloro-complexes with different valence states. Amines or amine based mixture have been used to extract Ru. Solvating extractants are employed to separate Ru and Os. The detailed extraction and stripping conditions of several solvent extraction processes have been reviewed. As an alternative to solvent extraction, solid-liquid method can be applied to recover trace amount of these metals.

Hydrogenation of trans-Cinnamaldehyde with Hydrido-Carbonyl Osmium(II) Complexes of Chelating Phosphine Ligands

  • 정민교;허성;이원용;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.806-810
    • /
    • 1997
  • A series of new hydridocarbonyl osmium(Ⅱ) complexes, OsHCl(CO)(PPh3)(L-L)[L-L=Ph2P(CH2)nPPh2 (n=1 (1), 2 (2), 3 (3), cis-Ph2PCH=CHPPh2 (4), and Fe(η5-C5H4PPh2)2 (5)] has been synthesized from OsHCl(CO)(PPh3)3 and chelating diphosphines. These complexes have been characterized by IR, 1H NMR and elemental analysis. The catalytic activities of these complexes both for the transfer hydrogenation of trans-cinnamaldehyde with 2-propanol as the hydrogen donor, and for the selective hydrogenation of trans-cinnamaldehyde with H2, have been examined. Complexes (1)-(5) were shown to have higher selectivities for the transfer hydrogenation of the C=O bond of aldehyde than for the transfer hydrogenation of the C=C bond of aldehyde. The selectivities for the transfer hydrogenation with 2-propanol as well as for the hydrogenation with H2 have been found to decrease in the order 3 > 5 > 2 > 4 > 1. Complex (3) has shown to possess almost 90% of the selectivity to cinnamyl alcohol for transfer hydrogenation. It is also found that there is a correlation between the ν(CO) of each complex and the hydrogenation, of the C=O bond of trans-cinnamaldehyde. Overall, the selectivities with the complexes (1)-(5) are greater for the transfer hydrogenation with 2-propanol than for the hydrogenation with H2.

Tetrathiafulvalene (TTF) Charge Transfer Compounds with Some Heavier Transition Metal (Au, Pt, Ir, Os) Chlorides

  • 정찬규;김영인;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1061-1065
    • /
    • 1996
  • The charge transfer compounds of tetrathiafulvalene (TTF) with the general formula of (TTF)mMCln, (M=Au, Pt, Ir, Os) were prepared by the direct reaction using excess HAuCl4·3H2O, H2PtCl6·xH2O, H2IrCl6·xH2O and H2OsCl6 respectively. The powdered electrical conductivities (σrt) at room temperature are given as follows; (TTF)3AuCl2, 4.53×10-3; (TTF)3.5AuCl2, 6.37×10-3; (TTF)3PtCl4, 5.51×10-4; (TTF)2IrCl4, 2.40×10-5; (TTF)OsCl4·1/2C2H5OH, 4.46×10-7 Scm-1. Magnetic susceptibility, electronic (UV-Vis.), vibrational (IR) and EPR spectroscopic evidences indicate that there is incomplete charge transfer from the TTF donor to gold, platinum, and iridium respectively, and that there is essentially complete charge transfer to osmium, thereby resulting a relatively low electrical conductivity in osmium compound. The EPR and magnetic susceptibility data reflect that the metals are in diamagnetic Au(Ⅰ), Pt(Ⅱ), Ir(Ⅲ), and Os(Ⅱ) oxidation states, and the odd electrons are extensively delocalized over the TTF lattices in each compound.

A Cytochemical Study on the Vacuolar Apparatus Participating in the Transport of Bile Acids in the Rat Hepatocytes (Cytochemical Study on the Vacuolar Apparatus for Bile Acid Transport) (담즙산 분비과정에 관여하는 흰쥐 간세포내 소기관에 관한 세포화학적 연구)

  • Shin, Young-Chul
    • Applied Microscopy
    • /
    • v.28 no.2
    • /
    • pp.171-180
    • /
    • 1998
  • In the present study, the vacuolar apparatus were investigated in the hepatocytes of rats treated with DA by transmission electron microscopy of conventional and cytochemical thin sections. In the rats after 20 min of dehydrocholic acid treatment, the cis Golgj cisterns were sacculated in line. The saccule occasionally occured by elongation and attenuated neck. The lysosomes also showed protrudent saccule. The vesicles were observed near the cis Golgi cisterns, lysosome and bile canaliculi. Some of the vesicles appeared to be fused to bile canaliculi. The cis Golgi cisterns usually faced toward the bile canaliculi both in normal and experimental groups. The cis Golgi cisterns, protrudent saccule and vesicles were almost devoid of visible contents. The osmium deposits were heavy on the protrudent saccule as well as on the cis Golgi cisterns or on the vesicles isolated near by, but they were light or not observed on the vesicles in the immediate vicinity of bile canaliculi. The acid phosphatase activities appeared on the lysosome and vesicles located near by, but did not appear on the vesicles as approaching closer to the bile canaliculi. The evidence suggests that the vesicles are derived from the cis Gogi cistern and lysosomes and fuse to bile canaliculi for exocytosis, and that the activity in the vesicles is diminished as approaching closer to the bile canaliculi.

  • PDF