• 제목/요약/키워드: oscillatory shear

검색결과 123건 처리시간 0.026초

Coronary Artery Numerical Flow Analysis for Determination of Bypass Graft Geometric Parameters

  • Kim, Hyung-Min;Kim, Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.905-912
    • /
    • 2005
  • A computational investigation of blood flow in a coronary artery grafted by artificial bypass was performed to determine such geometric parameters as the curvature of radius, approach length, and angle of end-to-side anastomosis. Transient flow features in the host artery were computed using FVM and SIMPLE algorithms. We compared flow distributions and wall shear stresses in two simple models, planar and non-planar, and confirmed that the non-planar bypass model was more conducive to suppressing intimal hyperplasia. Our non-planar model with $60^{\circ}$ of anastomosis and a 1.0 diameter approach length and radius of curvature predicts a relatively small, spatially-extended high-OSI (>0.01) zone, as well as an increased average wall shear stress on this zone.

Modeling of rheological behavior of nanocomposites by Brownian dynamics simulation

  • Song Young Seok;Youn Jae Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제16권4호
    • /
    • pp.201-212
    • /
    • 2004
  • Properties of polymer based nanocomposites depend on dispersion state of embedded fillers. In order to examine the effect of dispersion state on rheological properties, a new bi-mode FENE dumbbell model was proposed. The FENE dumbbell model includes two separate ensemble sets of dumbbells with different fric­tion coefficients, which simulate behavior of well dispersed and aggregated carbon nanotubes (CNTs). A new parameter indicating dispersion state of the CNT was proposed to account for degree of dispersion quantitatively as well as qualitatively. Rheological material functions in elongational, steady shear, and oscillatory shear flows were obtained numerically. The CNT/epoxy nanocomposites with different dis­persion state were prepared depending on whether a solvent is used for the dispersion of CNTs or not. Dis­persion state of the CNT in the epoxy nanocomposites was morphologically characterized by the field emission scanning electronic microscope and the transmission electron microscope images. It was found that the numerical prediction was in a good agreement with experimental results especially for steady state shear flow.

Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation

  • Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.175-183
    • /
    • 2009
  • This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

  • Song Ki-Won;Kuk Hoa-Youn;Chang Gap-Shik
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.67-81
    • /
    • 2006
  • Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude(${\gamma}_0{\approx}150%$) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (${\gamma}_0>200%$), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semi-empirical relationship because there exists no real physical meaning for the model parameters.

동적전단유동하에서 측정된 시멘트 페이스트의 히스테리시스곡선 (Hysteresis Loops of cement Paste Measured by Oscillatory Shear Experiments)

  • L. Erwin
    • 유변학
    • /
    • 제5권2호
    • /
    • pp.99-108
    • /
    • 1993
  • 시멘트 페이스트의 비선형적 점탄성 거동을 연구하기 위해 동적인 전단 유동 시험 이 수행되었다. 전단응력과 전단변형 또는 전단변형율간의 관계를 보여주는 히스테리시스 곡선을 얻기 위하여 전단응력이 연속적으로 측정되었다. 이는 기존의 주파수 혹은 변형의 증가에 의한 실험(frequency or strain sweep experiment)과는 달리 저자에 의해 수정된 점 성계(HAAKE Model RV20/RC20/CV20N)의 조정프로그램을 이용하여 수행되었다. 동적 전 단유동시험에서 얻어진 히스테리시스곡선은 시멘트 페이스트가 전단변형을 받는 동안 선형 탄성, 입자간 연결고리의 파괴 및 점성유체 거동을 보여준다. 측정된 항복전단응력은 전단변 형율의 증가에 따라 파우어함수(Power low equation)에 의해 증가함을 보여준다.

  • PDF

Significance of Hemodynamic Effects on the Generation of Atherosclerosis

  • Suh Sang-Ho;Roh Hyung-Woon;Kim Dong-Joo;Kwon Hyuck-Moon;Lee Byoung-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.836-845
    • /
    • 2005
  • Atherosclerosis, which is a degenerative vascular disease, is believed to occur in the blood vessels due to deposition of cholesterol or low density lipoprotein (LDL). Atherosclerotic lumen narrowing causes reduction of blood flow due to hemodynamic features. Several hypothetical theories related to the hemodynamic effects have been reported : high shear stress theory, low shear stress theory, high shear stress gradient theory, flow separation and turbulence theory, and high pressure theory. However, no one theory clearly explains, the causes of atherosclerosis. The objective of the present study was to investigate the mechanism of the generation of atherosclerosis. In the study, the database of Korean carotid and coronary arteries for geometrical and hemodynamic clinical data was established. The atherosclerotic sites were predicted by the computer simulations. The results of the computer simulation were compared with the in vivo experimental results, and then the pathogenesis of atherosclerosis by using the clinical data and several hypothetical theories were investigated. From the investigation, it was concluded carefully that the mechanism of the generation of atherosclerosis was related to the hemodynamic effects such as flow separation and oscillatory wall shear stress on the vessel walls.

Effect of aggregation on shear and elongational flow properties of acrylic thickeners

  • Willenbacher, N.;Matter, Y.;Gubaydullin, I.;Schaedler, V.
    • Korea-Australia Rheology Journal
    • /
    • 제20권3호
    • /
    • pp.109-116
    • /
    • 2008
  • The effect of intermolecular aggregation induced by hydrophobic and electrostatic interactions on shear and elongational flow properties of aqueous acrylic thickener solutions is discussed. Complex shear modulus is determined at frequencies up to $10^4$ rad/s employing oscillatory squeeze flow. Extensional flow behavior is characterized using Capillary Break-up Extensional Rheometry. Aqueous solutions of poly(acrylic acid)(PAA)/poly(vinylpyrrolidone-co-vinylimidazole) (PVP-VI) mixtures exhibit unusual rheological properties described here for the first time. Zero-shear viscosity of the mixtures increases with decreasing pH and can exceed that of the pure polymers in solution by more than two orders of magnitude. This is attributed to the formation of complexes induced by electrostatic interactions in the pH range, where both polymers are oppositely charged. PAA/PVP-VI mixtures are compared to the commercial thickener Sterocoll FD (BASF SE), which is a statistical co-polymer including (meth) acrylic acid and ethylacrylate (EA) forming aggregates in solution due to "sticky" contacts among hydrophobic EA-sequences. PAA/PVP-VI complexes are less compact and more deformable than the hydrophobic Sterocoll FD aggregates. Solutions of PAA/PVP-VI exhibit a higher zero-shear viscosity even at lower molecular weight of the aggregates, but are strongly shear-thinning in contrast to the weakly shear-thinning solutions of Sterocoll FD. The higher ratio of characteristic relaxation times in shear and elongation determined for PAA/PVP-VI compared to Sterocoll FD solutions reflects, that the charge-induced complexes provide a much stronger resistance to extensional flow than the aggregates formed by hydrophobic interactions. This is most likely due to a break-up of the latter in extensional flow, while there is no evidence for a break-up of complexes for PAA/PVP-VI mixtures. These flexible aggregates are more suitable for the stabilization of thin filaments in extensional flows.