• Title/Summary/Keyword: oscillatory flow

Search Result 234, Processing Time 0.026 seconds

Stability Analysis of Nanopipes Considering Nonlocal Effect (Nonlocal 효과를 고려한 나노파이프의 안정성 해석)

  • Choi, Jongwoon;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.324-331
    • /
    • 2013
  • In this paper, static and oscillatory instability of a nanotube conveying fluid and modeled as a thin-walled beam is investigated. Analytically nonlocal effect, effects of boundary conditions, transverse shear and rotary inertia are incorporated in this study. The governing equations and boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin method which enables us to obtain more accurate results compared with conventional Galerkin method. Variations of critical flow velocity of carbon nanopipes with two different boundary conditions based on the analytically nonlocal theory and partially nonlocal theory are investigated and pertinent conclusions are outlined.

Advances in measuring linear viscoelastic properties using novel deformation geometries and Fourier transform techniques

  • See, Howard
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.67-81
    • /
    • 2001
  • The development of new techniques for the dynamic measurement of linear viscoelastic properties is an active area of rheometry, and this paper surveys some novel deformation geometries which have been recently reported e.g. oscillating probe-type devices which are imbedded in or placed on the surface of the sample. Small amplitude band-limited pseudorandom noise is used for the displacement signal, with Fourier analysis of the complex waveform of the resistance force yielding the frequency dependent viscoelastic material functions (e.g. storage and loss moduli G", G"). Theoretical calculations of the fundamental equations relating force to displacement and instrument geometry, were carried out with the aid of the correspondence principle of linear viscoelasticity. The rapidity of the tests and flexibility in terms of sample preparation and stiffness mean that this basic technique should find many applications in rheometry. Three examples of oscillatory tests are presented in detail squeeze flow, imbedded needle and concentric sliding cylinder geometries.eometries.

  • PDF

Computation of unsteady wind loading on bluff bodies using a discrete vortex method

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.285-303
    • /
    • 1999
  • A discrete vortex method (DVM) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady, incompressible, separated flows around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow. This paper gives a brief description of the method and presents the results of calculations on static and transversely oscillating square section cylinders. The results demonstrate that the method successfully predicts the character of the flow field at different angles of incidence for the static case. Vortex lock-in around the resonance point is successfully captured in the oscillatory cases. It is concluded that the vortex method results show good agreement, both qualitatively and quantitatively, with results from various experimental data.

Effect of Boundary Conditions on the Stability Characteristics of a Nanotube with Scale Effect (Scale Effect를 고려한 경계조건에 따른 나노튜브의 안정성 해석)

  • Choi, Jong-Woon;Yun, Kyung-Jae;Kim, Sung-Kyun;Park, Sang-Yun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.923-928
    • /
    • 2012
  • In this paper, static and oscillatory instability of a nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, effects of boundary conditions, transverse shear and rotary inertia are incorporated in this study. The governing equations and the two different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of a nanotube with analytically nonlocal effect, partially nonlocal effect and local effect of a nanotube are investigated and pertinent conclusion is outlined.

  • PDF

An Analysis of Supersonic Jet Noise with a Converging-Diverging Nozzle (C-D 노즐을 고려한 초음속 제트 소음 해석)

  • Kim Yong Seok;Lee Duck Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.389-392
    • /
    • 2001
  • To investigate the generation mechanism of the shock-associated noise, an underexpanded supersonic jet from an axisymmetic nozzle is simulated under the conditions of the Nozzle exit Mach number of 2 and the exit pressure ratio of Pe/Pe =1.5. The present simulation is performed based on the high-order accuracy and high-resolution ENO (Essentially Non-Oscillatory) scheme to capture the time-dependent flow structure representing the sound source. It was found that the shock-associated noise is generated by the weak interaction between the downstream propagating large turbulence structures of the jet flow and the quasi-periodic shock cell structure during the one is passing through the other. The directivity of propagating waves to the upstream is clearly shown in the visualization of pressure field. It is shown that the present calculation of the centerline pressure distribution is in fare agreement with the experimental data at the location of first shock cell.

  • PDF

A Study on Transitional Unsteady Flows in a Square Duct (정4각단면 덕트 내에서 비정상 천이유동에 관한 연구)

  • Park, G.M.;Park, S.J.;Choi, J.H.;Yoo, Y.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.3
    • /
    • pp.252-263
    • /
    • 1989
  • A system of conservation equations for steady, oscillatory and pulsating duct flows are solved analytically by linearizing non-linear convective terms. Analytical solutions of velocity profiles for these flows are obtained in the form of infinite series. The experimental study for the air flow in a square duct ($40mm{\times}40mm$ and 400 mm long) is carried out to measure velocity profiles and other parameters by using a hot-wire anemometer with data acquisition and processing system. Major characteristics of the flows such as the classification of flow patterns, determination of critical Reynolds number and velocity profiles is accomplished from the experismental results.

  • PDF

An Experimental Study of Pneumatic Damping at the Air Chamber for an OWC-type Wave Energy Device (OWC형 파력발전 공기챔버의 공기감쇠력 실험 연구)

  • CHOI HARK-SUN;HONG SEOK-WON;KlM JIN-HA;LEW JAE-MOON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.8-14
    • /
    • 2004
  • Pneumatic damping through an orifice-type duct for an OWC-type wave energy device is studied experimentally. Forced oscillation tests are used to measure chamber pressure and velocity of air-flow through an orifice. Pneumatic damping coefficients are deducted from the experimental research, and the influence of frequency, heave amplitude, and orifice size are discussed. Finally, two formulas are proposed for the estimation of non-dimensional pneumatic damping coefficient by regression analysis. The proposed formula proves to be a reliable method for practical application.

Study of shear and elongational flow of solidifying polypropylene melt for low deformation rates

  • Tanner, R.I.;Kitoko, V.;Keentok, M.
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.63-73
    • /
    • 2003
  • An experimental technique was developed to determine the strain-rate in a tensile specimen. Then one can calculate the transient isothermal elongational viscosity. Both shear and elongational viscosities were measured to study the effect of shear and elongational fields on the flow properties. The comparison between these viscosities shows that the onset of rapid viscosity growth as crystallization solidification proceeds occurs at about the same value of time at very small deformation rates (0.0028 and 0.0047 $s^{-1}$). The comparison of these measured viscosities as functions of shear and elongational Hencky strains also reveals that the onset of rapid viscosity growths starts at critical Hencky strain values. The behaviour of steady shear viscosity as function of temperature sweep was also explored at three different low shear rates. Finally, the influence of changing oscillatory frequencies and strain rates was also investigated.

TOWARD AN ACCURATE APPROACH FOR THE PREDICTION OF THE FLOW IN A T-JUNCTION: URANS

  • Merzari, E.;Khakim, A.;Ninokata, H.;Baglietto, E.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1191-1204
    • /
    • 2009
  • In this study, a CFD methodology is employed to address the problem of the prediction of the flow in a T-junction. An Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been selected for its low computational cost. Moreover, Unsteady Reynolds Navier-Stokes methodologies do not need complex boundary formulations for the inlet and the outlet such as those required when using Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS). The results are compared with experimental data and an LES calculation. In the past, URANS has been tried on T-junctions with mixed results. The biggest limit observed was the underestimation of the oscillatory behavior of the temperature. In the present work, we propose a comprehensive approach able to correctly reproduce the root mean square (RMS) of the temperature directly downstream of the T-junction for cases where buoyancy is not present.

Three-Dimensional Model Construction and Blood Flow Analysis of Coronary Artery using In-vivo Angiography (생체내 혈관조형술을 이용한 관상동맥의 3차원 형상화 및 혈류특성 해석)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Kwon, Hyuck-Moon;Lee, Byung-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.753-758
    • /
    • 2003
  • The purpose of the present study was to establish the mechanism of the generation of atherosclerosis by analyzing the hemodynamic variables in the coronary artery where atherosclerosis occurs frequently. From the previous results, the stenosis phenomena due to atherosclerosis were related to not only biochemical reaction between blood and blood vessel but also the hemodynamic factors like flow separation and oscillatory wall shear stress. The present study aimed to investigate the causes of the generation and progression of atherosclerosis in the coronary artery. This study also aimed to develop the softwares which generate automatically three dimensional vascular models obtained by the angiogram images and the computer vision techniques. In the present study, the flow patterns for full three-dimensional hemodynamic characteristics were analyzed. To understand the three-dimensional hemodynamic characteristics, the wall shear stress distributions and secondary flows were investigated quantitatively.

  • PDF