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Abstract

The development of new techniques for the dynamic measurement of linear viscoelastic properties is an
active area of rheometry, and this paper surveys some novel deformation geometries which have been
recently reported e.g. oscillating probe-type devices which are imbedded in or placed on the surface of the
sample. Small amplitude band-limited pseudorandom noise is used for the displacement signal, with Fourier
analysis of the complex waveform of the resistance force yielding the frequency dependent viscoelastic
material functions (e.g. storage and loss moduli G', G"). Theoretical calculations of the fundamental equa-
tions relating force to displacement and instrument geometry, were carried out with the aid of the cor-
respondence principle of linear viscoelasticity. The rapidity of the tests and flexibility in terms of sample
preparation and stiffness mean that this basic technique should find many applications in rheometry. Three
examples of oscillatory tests are presented in detail : squeeze flow, imbedded needle and concentric sliding
cylinder geometries.
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1. Introdution

Dynamic measurements of linear viscoelastic properties
are a common way to characterise the rheological nature of
a material. In general, the tests involve applying a har-
monic displacement (or a harmonic force) to a bounding
surface of the sample, and measuring the material's
response to this excitation via the resistance force signal
(displacement signal). The force and displacement ampli-
tudes are assumed to be small so the sample responds in
the linear viscoelastic regime, enabling determination of
material functions such as the storage modulus G'(®) and
loss modulus G"(®), which are functions of the oscillation
frequency @ A great variety of rheometer designs can be
used for measuring linear viscoelastic properties, and in
this paper we will survey some recently developed novel
deformation geometries, e.g. probe-type devices which are
imbedded in or placed on the surface of samples. These
novel geometries have proved to be very useful in par-
ticular application situations, such as small sample vol-
umes, sheet-like samples, or solid-like samples which are
difficult to prepare for conventional tests. Another devel-
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opment which will be reviewed in this paper is the use of
pseudorandom noise signals for the displacement, taking
advantage of the linear nature of the sample's response to
impose a range of harmonic frequencies simultaneously,
with Fourier analysis of the resulting response signals iden-
tifying the individual frequency components.

Extensive reviews of the many techniques developed for
the measurement of linear viscoelastic properties appear in
the books by Walters (1975), Hutton et al. (1975), Ferry
(1980), Whorlow (1992), Macosko (1994), Collyer and
Clegg (1998). These techniques range from conventional
rotational rheometers (parallel plate, cone-plate, concentric
cylinders) where small amplitude oscillations in angular
displacements and torques are used as the basis of the mea-
surement, up to highly specialised devices such as the
Metravib instrument where electromagnets are used to
induce torsional oscillations in rod-like samples (see e.g.
Whorlow, 1992). An interesting class of rheometers for
measuring linear viscoelastic properties was developed in
the 1960's and 1970's, which involved steady rotation of
appropriate boundaries in the test geometries, resulting in
harmonic deformation of each fluid element in the sample
(see the review in Walters, 1975). Examples include the
rotating cantilever method and the orthogonal rheometer, in
which the sample was sandwiched between two rotating
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parallel discs with eccentric rotation axes. Two instruments
closely related to the techniques to be discussed in this
paper are the vibrating probe curemeter (Pethrick, 1993;
1998) and the paddle rheometer, which uses an oscillating
immersed paddle (Banfill e al., 1991; Affrossman et al.,
1990; Radhakrishnan and Pethrick, 1994; Pethrick, 1993;
1998). These rheometers are able to characterise the vis-
coelastic behaviour of a wide variety of materials, but they
do not appear to have a theoretical framework for the
force-displacement equation and so require careful cali-
bration with a known standard fluid.

The methods for measuring linear viscoelastic properties
described above typically impose a sinusoidal excitation at
a fixed frequency, and more complex signals are usually
not used, although in principle there is no reason why they
could not. Indeed, in the techniques to be described in this-
paper, a band-limited pseudorandom noise signal will be
used as the input strain history. It should be noted that
some recent commercial rheometers include a “multiwave”
oscillatory option whereby the strain signal consists of sev-
eral superposed sinusoids of different frequencies. Some
basic aspects of multiwave testing are discussed in Holly e?
al. (1988), Nelson and Dealy (1993; 1998). The band-lim-
ited pseudorandom noise technique to presented in this
paper can be considered an extension of this multiwave
method, although, in comparison, the random noise
approach can produce many more data points in the fre-
quency domain, for example 1 Hz to 100 Hz at 0.5 Hz
intervals. A large number of data points is desirable, for
example, if numerical inversion is to be carried out to
obtain the relaxation time spectra (e.g. using the regular-
isation technique of Honerkamp and Weese, 1993). The
combination of these complex waveforms and Fourier
analysis allows for very rapid but detailed measurements of
the linear viscoelastic properties, permitting close moni-
toring of changes in properties over time, an issue of inter-
est when dealing with curing or setting materials (e.g.
Gonsalkorale et al., 1999; Jiang et al., 2001). It should be
pointed out that with all these techniques, the oscillation
frequencies cannot be too high (usually less than 100 Hz)
otherwise inertia effects will influence the results (section
4.1).

From the viewpoint of rheometer construction, although
in principle a pseudorandom noise displacement signal can
be used in any rheometer geometry, its use in some par-
ticular configurations has recently become a practical pos-
sibility due to the development of accurate motion control
systems, such as the giant magnetostrictive Terfenol driver
system described in section 3. Further, software and motion
control technology have now advanced to the stage where
band-limited pseudorandom noise signals can be efficiently
generated, with fast Fourier algorithms capable of anal-
ysing the force signals in real time yielding the frequency
dependent material functions. Note that even with present
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technology, a system based on pseudorandom noise dis-
placements could still be difficult to incorporate in con-
ventional rotational theometers due to limitations in motor
design and control.

In addition to the band-limited pseudorandom noise as
the input displacement signal, this paper will describe the
use of small probe-type instruments of different geometries
(e.g. the needle in sect. 3.2), which are well suited to vis-
coelastic measurements of solid-like samples. Prescribed
displacement tests on solid-like materials are difficult to
perform on conventional rotational rheometers, since the
large torque signals often overload the transducer. On the
other hand, the force signals can be kept to much more
manageable levels through the use of small oscillating
probes with appropriate geometries. Further, the variety in
test geometries gives great flexibility in sample volumes or
sample preparation : the oscillatory squeeze flow instru-
ment (sect 3.1) requires small samples, whereas the imbed-
ded needle method (sect 3.2) requires minimal preparation
of the sample surface and also can be used on small sam-
ples.

In general, for any rheometer geometry, it is desirable to
have a theoretical framework and the fundamental equation
relating force to the displacement and the instrument
geometry. As will become clear from the discussion in this
paper (Sect. 2.1), a convenient and powerful way to the-
oretically derive the required force-displacement relation is
based on the correspondence principle of linear viscoelas-
ticity. This principle provides a powerful analytical tool for
finding the governing equation for the case of a viscoelastic
sample, using results obtained from small strain elasticity
or steady Newtonian fluid flow analyses.

In this paper we present an overview of basic concepts
and recent developments in the use of novel deformation
geometries coupled with pseudorandom noise displace-
ment signals and Fourier analysis, to determine the linear
viscoelastic properties of a sample. Although the focus will
be on the new developments, we will present an intro-
duction to fundamental features which should prove useful
to a new entrant in the field. The paper is organised as fol-
lows. In section 2 , we describe the key concepts of the cor-
respondence principle of linear viscoelasticity, and the use
of pseudorandom noise displacement signals and Fourier
transform techniques to extract the viscoelastic material
functions. In section 3 we describe three applications
which show the utility of this approach : oscillatory
squeeze flow (Sect. 3.1), oscillating imbedded needle
(Sect 3.2), and oscillating sliding cylinders (Sect. 3.3). The
possibility of other deformation geometries is treated in
section 3.4. In section 4 we discuss other important issues,
such as inertia effects (Sect. 4.1) and the use of large
amplitudes to explore non-linear viscoelasticity (Sect.
4.2). Finally, some concluding remarks are presented in
section 5.
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Fig. 1. Schematic diagram of the general contact problem. W(?) is
the small displacement normal to the surface of the half-
space, and F(?) is the resulting resistance force due to the
deformed matrix (assuming no slip at the probe-matrix
interface).

2. Key concepts

2.1. Correspondence principle of linear viscoela-
sticity

To begin we consider the general situation as shown in
Figure 1, where a probe is imbedded in a homogeneous
elastic matrix. Assume that the probe undergoes a small
displacement W from this position, where W<</, I being a
characteristic lengthscale of the imbedded probe geometry.
Typically the boundary conditions are no slipping at the
probe-matrix interface (perfect adhesion), and zero traction
at the free surface. This type of problem is often called a
“boundary value contact problem”, and for example the
resistance force F acting on the probe due to the deformed
matrix can be calculated. There are books which have
extensive descriptions of these kinds of calculations for
elastic matrices (e.g. Johnson, 1987; Hills et al., 1993). The
final equation relating the force F to the material's mechan-
ical properties, which we will represent initially as a func-
tion  guuerit (&maweriar could be a function of moduli,
compressibility, anisotropy, etc), and the displacement W,
takes the following general form:

F = kgmaterialW (2 1)

Here k is a constant depending on the probe geometry.

Many rheological measurements are performed under the
assumption that the sample is isotropic and incompressible
(so Poisson's ratio v =0.5). The material's linear mechan-
ical behaviour can then be uniquely characterised by one
material parameter, and we will use the elastic shear mod-
ulus G. Eq(2.1) can thus be rewritten

F=kGW (2.2)
We now turn to a discussion of the correspondence prin-
ciple of linear viscoelasticity, which will be used to obtain

a force-displacement relation for the case of a viscoelastic
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matrix. Broadly speaking, this principle states that the
results calculated for an elastic matrix can also be used for
the problem where the same probe (Figure 1) is imbedded
in a viscoelastic sample and undergoes small amplitude
oscillation W(z) = Wye™ about a mean position. The essen-
tial concept is the direct mathematical correspondence
between the governing equations for the Fourier-trans-
formed linear viscoelastic problem and the original small
strain elasticity problem with the same boundary condi-
tions. A detailed treatise on the correspondence principle is
Bland (1960) (see also Lee et al., 1960; Hashin, 1970;
Schapery, 1974; Walters, 1975; Pipkin, 1986; Christensen,
1979; Haddad, 1995; Tanner, 2000).

To illustrate the reasoning behind the correspondence
principle, let us consider the small strain contact problem
for the case of an incompressible elastic matrix. Writing o
for the stress tensor and € for the infinitesimal strain tensor,
the governing equations are as follows:

(E1) the equation of motion (ignoring body forces and

inertia effects)

V.o=0 2.3)
(E2) Conservation of mass (incompressibility)
tre=0 2.4

(E3) Constitutive equation (assuming a Hookean solid,
and ignoring an arbitrary isotropic pressure)

o=Ge (2.5)

(E4) Boundary conditions : prescribed displacement at
the probe-matrix interface S, (non-slip); and trac-
tion-free at the exposed upper surface S, (i.e. on =0,
where n is the unit normal vector at the surface).

We move on to consider the problem of a linear vis-

coelastic material under a small amplitude sinusoidal
deformation of frequency @: &(t) = &¢". The shear stress
will also be a sinusoidally varying quantity (generally with
in-phase and 90° phase-shifted components) so we can
write o= o*¢'”, where 6* is the complex amplitude. The
governing equations are as follows, and we see that
although they have a sinusoidal time dependence, they
clearly have an analogous form to the elastic governing
equations discussed previously ((E1) - (E4)) :

(VE1) the equation of motion (ignoring body forces and

inertia effects) '

V-o%e'" =0 (2.6)
(VE2) Conservation of mass (incompressibility)
trgg=0 (2.7

(VE3) Constitutive equation (neglecting an arbitrary iso-
tropic pressure)
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o) = 0% = g,G*e™” (2.8)

Here G* is the complex modulus of the viscoelastic mate-
rial.

(VE4) The boundary conditions for the viscoelastic
matrix problem are the same as for the elastic problem,
since they are geometrically identical viz prescribed dis-
placement at the probe-matrix interface S| (non-slip), and
traction-free at the exposed upper surface' S, (i.e. *.n = 0).

In both elastic and viscoelastic contact problems, the aim
is to find an expression for the instantaneous force acting
on the probe : the constant force F after the step dis-
placement in the elastic problem, and the sinusoidally vary-
ing force F(f)=F*¢™ in the viscoelastic problem. In
general, the force vector F can be found by integrating the
surface traction vector o.n over the contact interface. As
seen above, the correspondence between the governing
equations for the elastic and viscoelastic problems (observe
the similarity between (E1) and (VE1) above, (E2) and
(VE2), eic) means that the expressions for the force will
also be similar, since they involve the same spatial inte-
gration of the traction vector. Thus the solution for
F(1) = F¥¢'™ can be obtained from the elastic solution by
replacing the dependent variables by their Fourier trans-
forms, and the material parameters by the Fourier trans-
forms of their viscoelastic counterparts (e.g. G is replaced
by G*, etc). See Bland (1960) for an extensive table of
these “elastic-to-viscoelastic” conversions. We thus apply
this principle to the general equation eq(2.2) above,
enabling us to immediately write down the force signal
equation for the viscoelastic case under small amplitude
oscillatory displacements W(f) = Wye'™:

F(f) = F*e™ = kG*W,e'™ (2.9)

where F* = F*(@) = F'(w) + iF"(w) is the complex Fourier
coefficient of the force signal F(z), k is the same instrument
geometry factor as in the elastic case (eq(2.2)), and
G*=G*(w) =G'(@) + G"(w) is the complex modulus of
the sample. Often the ¢ factor is not explicitly written,
leaving us with the following complex equation relating the
in-phase and 90° phase-shifted components

F* = kG*W, (2.10)

Further, we point out that for the sake of concreteness we
have written the displacement as W(r) = W' (with W,
real) and the Fourier transform of this (at frequency @) is
simply W,. To be more general, we could let the dis-
placement be W(f) = W*e'® with W* a complex number, so
that the Fourier coefficient becomes W*. Using this more
general notation we see from eq(2.10) that the complex
modulus G* is proportional to the quotient F*/W* (a com-
plex division) as follows

70

F* «

W kG* (2.11)

The complex quantity F*/W*, which is essentially the
ratio of the “output” over the “input” is often called a
“transfer function”. The use of transfer functions will be
discussed further in section 2.3.

It should be noted that although the previous discussion
has been based on the elastic contact problem, there is an
equivalent version of the correspondence principle relating
Newtonian fluid response to viscoelastic response. Spe-
cifically, the principle can be employed to convert the solu-
tion to a boundary value problem involving an inertialess
Newtonian liquid in steady flow, to the corresponding solu-
tion with the same geometry for a small amplitude oscil-
latory flow in a viscoelastic fluid. In this version of the
correspondence principle, the Newtonian viscosity would
be replaced by the dynamic viscosity n*(w) = (G"-iG")/ @
and the steady flow rates would be replaced by terms like
dW(n)/ldt = ioWye'™. This approach is useful in deformation
geometries where it is more natural to think in terms of lig-
uids and their flows, such as in the calculation of the slid-
ing cylinder geometry in Sect 3.3.

We conclude this introduction to the correspondence
principle of linear viscoelasticity, by pointing out possible
extensions of the basic principle. The effects of fluid inertia
can be calculated in some special cases - see Bland (1960)
for details (a brief discussion of inertia corrections is given
in section 4.1). The stress relaxation response of a vis-
coelastic material under a step strain can also be calculated
(using Laplace instead of Fourier transforms - see Bland,
1960; Tanner, 2000). Finally, it should be noted that the
correspondence principle can be used to treat compressible
materials (not just the case of v=0.5 considered in this
paper) - see Bland (1960).

2.2. Pseudorandom noise displacement signal and
fast Fourier transforms

The above discussion has focussed on the response under
a single frequency @ However, since the governing equa-
tion between force and displacement is linear (eq(2.10)),
the principle of linear superposition can be invoked, mean-
ing that we can use a more complex displacement history
with a broad frequency content as the input signal. The key
idea behind the superposition principle is that the force due
to a series of superposed sinusoids will be the sum of the
force responses that the individual sinusoids would have
caused alone. Thus if a Fourier transform is carried out on
the complicated displacement signal and resulting force
signal, the values of the storage and loss moduli (G*(w)
=G'+iG") at a number of different frequencies can be
determined via eq(2.10). This means that with a single
measurement it is possible to rapidly obtain information
about the viscoelastic properties over a range of frequen-
cies (Nelson and Dealy 1993; 1998). This is the funda-
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mental approach adopted in the techniques to be discussed
in this paper.

In this section we will discuss the nature and the con-
struction of a band-limited pseudorandom noise signal,
which is used as the input strain signal in the different
probe geometries described in Sect. 3. We will also discuss
algorithms such as the Fast Fourier Transform which
enable efficient conversion of the time dependent force
response signal to the frequency domain.

To begin, let us consider the general Fourier series for a
function F(¢), which is assumed to be periodic with period
T. We assume that F(¢) is represented by a series of N dis-
crete data points, measured at equal time intervals. For a
series of data points such as this, the Discrete Fourier
Transform (DFT) is used to separate the waveform into the
Fourier components. The DFT calculates the complex
amplitudes at each of the discrete frequencies that make up
the Fourier series representation of the discrete signal. That
is, the DFT determines the coefficients g; and b; in the fol-
lowing Fourier series:

N-1

F(t) =¥ a; cos(wit)+b; sin(w;t)
Jj=0

(2.12)

Here ®; are integral multiples of the fundamental fre-
quency ay,=27/T. The coefficients a; and b; are real
numbers. We will find it convenient to incorporate a;, b;
into the complex quantity F*(j), and write more com-
pactly (Bracewell, 2000)

F(n)= Ni'F*(/)exp(iznjn/N)

Jj=0

(2.13)

Here n is an index referring to the data point series. F*(j)
is the discrete, complex-valued frequency domain series,
and can be calculated from F(n) as follows:

N

F(j) =1%1 _IF(n)exp(—iZHjn/N) (2.14)
0

The above equation is the Discrete Fourier Transform of
the series of data points describing the function F(f) (or
equivalently F(n)). We see that since the Fourier transform
is linear, a sinusoidal component added in the time domain
will also be added to the same proportion in the frequency
domain. Thus, it is possible to construct a waveform with
a desired frequency spectrum by adding together appro-
priate waveforms in the time domain : that is, components
from each waveform are added until the sought-for fre-
quency spectrum is achieved. In this review, we focus on
displacement waveforms which are band-limited pseudo-
random excitation sequences. These have similar autocor-
relations as white noise (i.e. a single impulse at lag 0) but
are cyclic, so that ideally only one period of the waveform
need be sampled to obtain all necessary information, and
they usually have a flat frequency spectrum although this
can be adjusted if necessary. The frequency range and res-
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olution are controlled by the number of discrete data points
N and the interval length At in the time domain. Pseu-
dorandom noise signals are often used as the input signal
in various electronic circuits etc to estimate the linear
response behaviour as a function of excitation frequency
(see e.g. Horowitz and Hill, 1989)

There are several ways to generate a pseudorandom noise
signal. Pseudorandom binary sequences PRBS, also called
“pbinary maximum length sequences (BMLS)”, have been
developed for use in rheological applications (Nelson et al.,
1994; Nelson and Dealy, 1998). Basically PRBS's consist
of a series of steps between two signal levels, with the level
changed only at certain discrete time intervals. The result is
a sequence of chains of ON or OFF states of different dura-
tion, and this is the strain time pattern imposed on the sam-
ple. Nelson and Dealy (1998) describe measurements
performed on a silicone putty (polydimethylsiloxane) in a
rotational rheometer using the arbitrary waveform option
and an external waveform generator producing a PRBS
sequence consisting of 1240 points. Fourier analysis was
carried out on the resulting torque signal and it was found
that the technique was able to measure the viscoelastic
properties of the sample over the frequency range applied.
Nelson and Dealy focussed on the lower frequency behav-
iour, with a bandwidth of 0.06-0.6 Hz. Another possible
pseudorandom sequence is the randomly switched bi-level
waveform, which resembles the PRBS but is based on a
different algorithm whereby at each instant of time the sig-
nal switches to the opposite state with a given probability.

An alternative method of producing band-limited pseu-
dorandom noise displacement signals, and indeed the
method used in the tests described in section 3, is to notice
that the Fourier representation of a time signal F(r) can also
be written as F(r) = Z;V;O' A, cos(mt+68,) where A; is a real
constant and &, is the phase angle. Here, for each frequency
component (i.e. each @), the amplitude A; is set to a pre-
determined mean value and simultaneously the phase
angle ¢ is varied randomly between 0 and 27. Using this
approach, the band-limited pseudorandom noise signal can
be synthetically generated and then stored in the instru-
ment's operating program. More details about the charac-
teristics of pseudorandom noise and some digital circuits
which can be used for their generation can be found in, for
example, Horowitz and Hill (1989). In addition to the pseu-
dorandom signal, another technique which can be useful
for spectral analysis is the CHIRP/Z transform (Horowitz
and Hill, 1989), where the signal is a linear scan of fre-
quency versus time for each sweep, with the response sig-
nals from the entire band of frequencies being gathered
continuously.

Once the pseudorandom strain signal has been applied to
the sample and the resistance force signal is recorded, the
Fourier transform is applied to the force waveform F(7) in
the time domain to convert it to the frequency domain.

June 2001 Vol. 13, No. 2 71



Howard See

Although the formula presented in eq(2.14) could be used
directly (i.e. numerically solve for F*(j) for each j=
0,1,2,..., N-1) this calculation can be quite lengthy if there
are many data points - indeed for N data points the time
required would be proportional to N*. These days, the most
common procedure is to use the Fast Fourier Transform
(FFT) as developed by Cooley and Tukey (1965), which
greatly accelerates the calculation (with this algorithm the
calculation length scales as N log, N). These FFTs are often
available as commercial software packages, and for details
of the programming algorithm, the reader is referred to the
many books now available on the subject (e.g. Ramirez,
1985; van Loan, 1992; Walker, 1996). For our purposes in
this review, it will suffice to note that the FFT is a highly
efficient way to extract the Fourier components of the time
signal, and will give us the sought-for function
F*(w) = F(0)+iF" ().

Although we will skip over the details of the Fast Fourier
Transform, it would be useful to point out some general
issues which need to be considered when implementing
these pseudorandom noise signals together with the FFT
algorithm. These issues will be listed here and briefly
described, and the interested reader is urged to consult the
original references for further details:

(a) The sampling rate, which is the rate at which the data
points are being measured during an experiment, is a key
quantity. If we write f; for the sampling frequency, Shan-
non's theorem (also known as the Nyquist sampling the-
orem - Bracewell, 2000) states that f; must be at least twice
the highest frequency component in the sample being mea-
sured, which for this discussion we will write as f,.,. If the
sampling rate is too low, the problem of “aliasing” may
occur, which is the apparent association of higher fre-
quency components with an incorrect lower frequency,
brought about by the fact that the sampling rate is unable
to keep track of the rapid changes of the high frequency
components of the signal. Aliasing affects both the mag-
nitude and phase of the signals. It is important to be aware
of this aliasing possibility even if the sampling rate is well
above the upper limit of the bandwidth of interest, since if
the signal used has significant higher harmonics above the
upper limit frequency, these will be aliased into the lower
frequencies of interest and contaminate the results. In fact,
the waveform is often passed through a filter so that higher
frequency harmonics are removed. On the other hand, too
high a sampling rate will lead to the collection of surplus
data, with excessive data storage requirements and long
calculation times.

(b) Care needs to be taken when setting the data acqui-
sition conditions for an experiment (i.e. the sampling rate
and the number of data points A in the time domain series).
Particularly, it is essential that an integral number of cycles
be sampled for each frequency, since this ensures that the
frequency components of the signal will fall exactly on the
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corresponding discrete points in the Discretised Fourier
Transform. If the sampling conditions are such that a non-
integral number of waveforms are sampled, a phenomenon
called “leakage” can occur (e.g. see Ramirez, 1985; Nelson
and Dealy, 1998; Bracewell, 2000) which results in incor-
rect amplitudes and phases being attributed to the fre-
quency nodes. Leakage is also expected to occur if
truncated data strings are used (Bracewell, 2000). We point
out that there are special “windowing” techniques which
can be employed to reduce problems due to leakage if non-
periodic samples are to be sampled (e.g. Ramirez, 1985).

(c) While greatly accelerating the computation of the dis-
crete Fourier transform (eq(2.14)) the Fast Fourier Trans-
form has the limitation that it generally requires the
number of data points in the time series to be of the form
2" (i.e. have 2,4.8,16, .... data points) (Bracewell, 2000).
Versions of the FFT have been developed which can handle
an arbitrary number of data points in the time series, such
as using data string lengths of 3", 5™, 7" etc or adding zeros
to the data string to extend the data to 2" elements (see
Bracewell, 2000). However care should be taken to ensure
that no artefacts appear in the frequency spectrum data due
to these procedures. Many of these techniques have been
built into recent commercial software packages such as
MATLAB (version 3.5) whose ffi() function will accept
any number of data points.

(d) The measurements of the force signal should be com-
menced after start-up transient behaviour becomes negli-
gible, usually after several excitation cycles have been
imposed (Nelson and Dealy, 1998). The length of time
required before the start-up transients can be neglected for
a particular sample can be estimated from stress relaxation
tests.

(e) It should be confirmed that with the data acquisition
systems used, the stress and strain signals are sampled at
precisely the same moment, otherwise an extra phase shift
may be introduced between stress and strain which affects
the calculated value of the rheological phase shift . If the
method of data acquisition is known (e.g. alternate sam-
pling from the two channels), it is possible to approxi-
mately correct for the extra phase shift introduced (Nelson
and Dealy, 1998). Further, care in this regard should also
be taken when using electronic filters to improve the qual-
ity of data acquired (e.g. anti-aliasing filters which are low
pass filters with high frequency cutoffs), since these can
also affect the phase difference between the stress and
strain signals.

(f) The signal-to-noise ratio can be increased by sam-
pling over a large number of displacement sequences. Nel-
son and Dealy (1998) recommend that the average of the
data points be taken in the time domain first, and then the
Fourier transform be applied to this averaged time domain
data series. Although it is possible to take Fourier trans-
forms of each cycle individually and calculate the average

Korea-Australia Rheology Journal



Advances in measuring linear viscoelastic properties

of these, computations performed this way can be become
quite long.

(g) To characterise the nature of the response in the fre-
quency domain, a “power spectrum” is often used, defined
generally for a function H(t) = H*¢' by Gu(w)=|H*
(w) I*. In the experiments described in section 3, the aver-
age power spectrum calculated over several cycles of the
displacement signal is typically quite flat over the range of
frequencies of interest (typically 1 Hz to 100 Hz). How-
ever, it should be noted that a flat power spectrum for the
displacement means that the forces corresponding to the
higher frequency components may be large, since the shear
rate amplitude is highest for those frequencies (< @y, with
7% essentially constant). It is possible to use displacement
signals where the power spectrum decreases at higher fre-
quencies to compensate for this effect (Field, 1995).

2.3. Determination of the viscoelastic properties
vsing transfer functions

Once Fourier transforms have converted the displace-
ment signal and force signal data to the frequency domain
giving us W*(w) and F*(w), the final step is to obtain the
frequency-dependent viscoelastic properties G*(w) using
the force-displacement relation eq(2.10). The ratio of out-
put over input in the frequency domain (here, F*/W*-
eq(2.11) is often called a “transfer function” (TF), which is
a complex number and a function of frequency @

Transfer functions are commonly used since they effi-
ciently facilitate a process called “frequency domain equal-
ization” which is often carried out to improve the data
quality (Horowitz and Hill, 1989). In the rheological tests
described here (Sect. 3), it is inevitable that the measured
quantities become convoluted with the imperfect response
of the instrument itself (also a function of frequency) and
correction for this in the time domain is practically
impossible. However, convolution of the data in the time
domain becomes a straightforward product in the fre-
quency domain, and correction is relatively simple, ie the
measured transfer function can be written as the product
TF compte- TFinstrumenss Where TF ., is the idealised transfer
function for the material in the absence of any instrument
contamination, and TF,,..... describes the instrument's
frequency dependent behavior. The procedure involves
writing TF . as follows

TF TF,
TF.mmple(w) = TFref sample instrument

TFref TFinsrrument (2 15)

where TF,is the (deconvoluted) transfer function for a ref-
erence material with known mechanical properties, deter-
mined by a separate independent measurement. Field and
co-workers (Field, 1995; Field et al., 1996) describe the
use of linear springs of known stiffness (where TF, =k,
the spring constant) or Newtonian fluids with a known vis-
cosity nn (TF,;=iwn). The software for the oscillatory
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squeeze flow instrument (section 3.1) incorporates fre-
quency domain equalization. Eq.(2.15) clearly demon-
strates the advantage of introducing the response of the
reference material, since the non-convoluted transfer func-
tion for the sample TF,,,,. can be obtained by complex
division of the two measured functions, multiplied by a
known non-convoluted function 7F,. Thus we see that
with this procedure, it is not necessary to separately deter-
mine the instrument response TF;.umen-

3. Applications in different rheometer geome-
tries

3.1. Oscillatory squeeze flow

As illustrated in Fig. 2, in this geometry the film-like
sample is sandwiched between two parallel circular plates.
The upper plate is oscillated vertically about a mean posi-
tion with a small amplitude, and since the sample main-
tains adhesion with both plate surfaces, oscillatory squeeze
flow is induced. The force exerted by the sample on the
stationary bottom plate is detected by the load cell directly
underneath. Typically the motion used is a band-limited
pseudorandom noise signal with frequency range of 3 Hz
to 100 Hz. Fourier analysis is carried out on the force sig-
nal to extract the viscoelastic properties, as discussed in
Section 2. The development of this instrument, called the
“Micro-Fourier Rheometer” was a joint project between
the University of Sydney and the Commonwealth Scien-
tific and Industrial Research Organisation (Field, 1995;
Field et al., 1996; Phan-Thien et al., 1996), and currently
efforts are being made toward commercialisation.

Presently there is an extensive body of literature on the
use of squeeze flow for rheological characterisation of
materials. There have been many studies of the response of
materials in squeeze flow under constant compressive
force, or constant squeezing speed : the reader is referred
to the reviews in Bird et al. (1987), Macosko (1994), Gib-
son et al. (1998), Tanner (2000) and references therein.
Introducing a very thin lubricating film between the plate
surfaces and the sample leads to biaxial extensional flow,
and this has also been studied by several workers (reviewed
in Macosko, 1994). However, there appear to be no reports
of the use of small amplitude oscillatory squeeze flow to
characterise the viscoelastic properties of thin-film sam-
ples, which will be the focus of the rest of this sub-section.

We consider a sample undergoing small amplitude oscil-
latory squeeze flow, and seek the governing equation relat-
ing the force signal F(r) = F*¢' to the upper plate motion
W(t) = We'. The first step is to write the instantaneous
resistance force F for a thin film of Newtonian liquid of
viscosity n when the upper plate is moved down with a
velocity V with the bottom plate stationary. We ignore iner-
tia effects and use the thin film lubrication approximation
(valid if the ratio of the upper plate diameter to film thick-
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ness is at least 10:1) and obtain the following well known
Stefan equation (see e.g. Bird er al., 1987):

F= k:queezenv (3 1)

Here k... depends on the radius a and the sample thick-

ness h,, and is given by
4

k =% Ta (3.2)

squeeze h

(=)

Following the discussion in section 2.1, the next step is to
convert this Newtonian liquid result via the correspondence
principle to a formula for a viscoelastic fluid sample where
the upper plate undergoes small amplitude oscillatory dis-
placements W(f) = Wpe'™ about the mean position shown in
Figure 2. A key assumption is that throughout the oscil-
latory displacements, the fluid remains adhered to the
plates. A simple substitution into eq(3.1) (Field er al.,
1996) will yield the sought-for instantaneous force which
will be a sinusoid F(t)=F *e' with F* given by

F* = k.rqueezeG* WO (33)

where K. is the same instrument geometry factor
eq(3.2), and the complex modulus G* = G'+iG". Eq(3.3) is
the governing equation for the oscillatory squeeze flow
technique and we see that it indeed has the general form
discussed in section 2.1 (eq(2.10)). Note that from eq(3.3)
we find that the transfer function TF = F*/W* = F*/W,
(section 2.3) becomes

TF = kygueere G* (34)

Referring to Fig. 2, we now describe the experimental set
up. The upper plate was made of polished stainless steel
with the radius a typically 15 mm, and was attached to a
vertical motion driver which in turn was connected to a sig-
nal generator with feedback. The driver was made from

I : . [ Sample
]

Load cell Force

Fig. 2. A schematic representation of the oscillatory squeeze flow
test (section 3.1). The stationary bottom plate is attached
to a load cell, and the upper plate is oscillated vertically
with a small amplitude W(r) = Woe'”' with Wy/hg<<1.
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Terfenol-D, a giant-magnetostrictive rare earth material
which undergoes large strains with the application of a
moderate external magnetic field (Goodfriend, 1991), and
was purchased from ETREMA Products, Inc. (USA). To
ensure symmetric motion, the driver was preloaded
mechanically (with a spring) and magnetically (with a per-
manent magnet), and the variational magnetic field was
produced by a coil operating at low voltage and moderate
current. The output motion (up to 100 Hz) was linearised
using a PID feedback controller. The instantaneous vertical
position of the upper plate was detected by a fibre-optic
device, giving the displacement W(z). The amplitudes of
the oscillatory motions were kept small, typically less than
5 pum, and the mean gap value was 1 mm. The bottom plate
remained stationary, and a piezoelectric load cell rigidly
attached underneath was used to measure the instantaneous
force F(z). Analog signals from the load cell are digitised
using analog to digital convertors (ADC). These were syn-
chronised with the signals from the position detection sys-
tem and the digital values were used by the computer
software to calculate the discrete Fourier transforms. Over-
all, the instrument is constructed to have a very high stiff-
ness with a resonance frequency well above the operating
frequency range (see the discussion in Field, 1995).

As discussed in Section 2.3, frequency domain equal-
ization was carried out on the transfer function to correct
for imperfections of the instrument response. As a refer-
ence material, a small compression spring of known spring
constant was used, although equivalently a Newtonian fluid
of known viscosity could also be used (Field er al., 1996).

Measurements of the linear viscoelastic properties of sev-
eral types of materials have been successfully carried out
using this instrument : standard Newtonian oils and syn-
ovial fluids (Field, 1995; Field et al., 1996), bitumens
(Swain et al., 1997), concentrated suspensions of particles
dispersed in oils and polymer solutions (See et al., 1998;
See et al., 2000b; see Fig. 3). The oscillatory squeeze flow
instrument with pseudorandom noise displacements has
also been used to monitor the setting behaviour of alginate-
based dental materials (Gonsalkorale et al., 1999). In all of
these tests, an important step prior to the use of the pseu-
dorandom noise displacement signal was the confirmation
that the material was responding in the linear viscoelastic
regime. This was checked by applying a single frequency
input signal for the upper plate motion, and observing that
the force signal was indeed sinusoidal, with an amplitude
proportional to the displacement amplitude. For the major-
ity of the samples, comparative tests were also made with
conventional rheometers (e.g. cone-plate, parallel plates)
and there was good agreement observed for the values of
G' and G" obtained with the pseudorandom squeeze flow.
Finally, as will be discussed in section 4.1, fluid inertia can
affect measurements of a material's response in oscillatory
flows, particularly the values of G', and for oscillatory
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Fig. 3. Linear viscoelastic properties of suspensions of polyeth-
ylene particles with average diameter 80 ¢m dispersed in
3% by weight Separan polymer solution, as a function of
particle volume fraction ¢, measured by the pseudoran-
dom noise and the oscillatory squeeze flow method (See
et al., 2000b). (a) The storage modulus G' and (b) loss
modulus G" are plotted as functions of ¢ and oscillation
frequency ((OJ 20 Hz, < 40 Hz, & 60 Hz, O 80Hz, B
100 Hz).

squeeze flow a theoretical treatment of this problem has
been presented by Phan-Thien ez al. (1996). These workers
derived a correction formula for G' which has in fact been
incorporated in the instrument's operating software.

The rapidity of the tests achieved by the use of pseu-
dorandom noise signals is an attractive feature, and indeed
the tests using this technique were carried out in a time sig-
nificantly less than the time required to measure individ-
ually at each frequency over the same frequency range.
Typically, a measurement over one cycle of the pseudo-
random strain series will take slightly longer than the
period of the lowest frequency sampled.

Finally, we point out that, as shown by Field (1995), the
dominant contribution to the resistance force is the thin
fluid film sandwiched under the upper plate, and for most
materials there is negligible effect from the meniscus or
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Fig. 4. A schematic representation of the oscillating imbedded
needle experiment (section 3.2).

indeed any of the surrounding material beyond the radius
of the upper plate. Hence it may be possible to test samples
that are considerably spread out beyond the edge of the
upper plate, suggesting that this method could find use in
a more portable device for testing film-like samples (e.g. as
an on-line tester in sheet production processes).

3.2, Oscillating imbedded needle

As illustrated in Fig. 4, this geometry uses a slender nee-
dle which is imbedded normally into the sample surface,
and made to oscillate axially with a small amplitude about
this position. The instantaneous force F(#) acting on the
sample vessel is detected by a load cell (this equals the
force acting on the needle since inertial effects are neg-
ligible). The dynamic viscoelastic properties of the sample
can thus be determined using pseudorandom displacement
signals and Fourier analysis (See er al., 1999b).

There have been some previous instruments which used
a similar basic approach of an oscillating imbedded probe.
Particularly noteworthy are the Vibrating Needle Cureme-
ter (VNC) developed by the Rubber and Plastic Research
Association (Pethrick, 1993; Pethrick, 1998), and the
vibrating paddle rheometer (Affrossman et al., 1990; Ban-
fill er al, 1991; Radhakrishnan and Pethrick, 1994
Pethrick, 1993; 1998). The VNC worked on the principle
of a needle attached to a moving electromagnetic coil
which was located close to one pole of a permanent mag-
net. An AC current energised the coil which vibrated the
needle at the AC frequency, usually chosen to be close to
the resonance frequency of the assembly. The reduction in
oscillation amplitude when the needle was placed in a sam-
ple was detected as a change in the back EMF in the coil,
enabling the degree of viscosity of the sample to be
determined. The VNC was chiefly developed for the pur-
pose of monitoring the curing process in reactive chem-
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ical systems. The vibrating paddle rheometer follows the
same principle but with a small paddle immersed in the
sample, and used more sophisticated position sensing via
a linear variable differential transformer, enabling the in-
phase and 90 phase-shifted components of the response to
be determined (proportional to G' and G"). This instru-
ment has an interesting history : it was developed from the
1980's in a collaborative project between Strathclyde Uni-
versity (Prof. Pethrick) and the Carter Baker Enterprises
Ltd company. It was first marketed as the “Strathclyde
Rheometer”, and when the company was taken over by
Polymer Laboratories Ltd, the instrument name was
changed to the Thermal Scanning Rheometer (the name
reflecting the system's ability to apply thermal ramping to
samples during the mechanical tests). Subsequently the
materials testing division of Polymer Laboratories was
acquired by Rheometrics Inc. (later Rheometric Scientific
Inc.). Both the VNC and vibrating paddle systems used
single frequency small amplitude sinusoidal oscillations at
any one time. With these data the viscoelastic properties of
the sample could be extracted, although calibration of the
instruments with a standard sample of known viscoelastic
properties was required. A first principles theoretical der-
ivation of the force-displacement relation does not seem to
be available for these instruments. The interested reader is
encouraged to see the detailed review by Pethrick (1998)
and references therein, for further information on the
Vibrating Needle Curemeter and the vibrating paddle
instrument.

Recently the use of the imbedded oscillating needle tech-
nique combined with a pseudorandom noise displacement
signal and Fourier analysis has been reported by See er al.
(1999b). These experiments have some parallels to the
oscillatory squeezing flow method above (section 3.1) : the
Terfenol-D driver was directly attached to the needle, and
the sample was held in a vessel rigidly attached to the
piezoelectric load cell underneath. Typical dimensions
were (referring to Fig. 4): [=2mm, r,=0.25 mm. The
sample vessel was typically 7mm in radius and 9 mm
deep. The oscillation amplitudes were typically less than
2um.

We require the governing equation relating the instan-
taneous resistance force F(r) to the needle motion W(t).
The calculation process involves using the slender body
theory and replacing the needle by a line distribution of
“Mindlin states”, which are the stress and strain distribu-
tions induced by a point force acting near the free surface
of an elastic halfspace (for other calculations of this kind
see e.g. Russel, 1973; Phan-Thien and Goh, 1981; Phan-
Thien et al., 1982; Phan-Thien and Kim, 1994). The inter-
ested reader is referred to See et al. (1999b) for details of
the calculation for the elastic matrix, but the final result is
that the force F, after a small strain W has been applied to
the needle, is given by the following:
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F= kneedleGW (35)

Here G is the shear modulus of the matrix, and k... 1S @
constant determined by the needle geometry, which
approaches the asymptotic value of 2/a{In(2//r,)]" as the
aspect ratio I/r, — ©°, For needles of finite thickness, f,....
has been calculated numerically by a boundary element
method assuming different needle shapes - detailed results
have been graphed and tabulated in See et al. (1999b).

We now use the correspondence principle of linear vis-
coelasticity to extend this result for an elastic matrix to
yield the formula for the instantaneous force F(f) = F*¢'™
when the matrix is viscoelastic and the needle is under-
going small amplitude oscillations W(z) = Woe'™ about the
mean imbedded depth /. The governing equation will thus
take the form

F* = Kpoearl G* W (3.6)

where k... 15 the same as above and G* is the complex
modulus.

Eq(3.6) is the governing equation for the imbedded nee-
dle method, and we see that it does have the general form
of eq(2.10). Thus with this method as well, band-limited
pseudorandom noise can be used as the input displacement
signal to obtain the frequency dependent material prop-
erties from Fourier analysis of the force signal F{(¥).

A series of experiments using this technique to measure
the linear viscoelastic properties of bituminous materials
have been reported (Swain et al., 1997; See et al., 1999b;
See et al., 2000a). In these tests the force-displacement
relation eq(3.6) was used directly without any frequency
domain equalisation, but reasonable agreement was
observed between results obtained with this technique and
those obtained independently using the parallel plate con-
figuration. The frequency range explored with the pseu-
dorandom noise input signal was 2 Hz to 50 Hz. Typical
data curves are shown in Fig. 5. It should be noted that for
these high viscosity materials, the effects of surface ten-
sion are not large. Further, tests with different sized sam-
ple vessels and needle positions showed that the walls and
bottom of the chamber had a minimal effect on the mea-
surement results, provided the needle was inserted at least
3 mm from a wall and the imbedded depth was less than
3 mm.

3.3. Concentric sliding cylinders

As illustrated in Fig. 6, this geometry uses a pair of con-
centric cylinders, with the hollow inner cylinder being slid
axially through the outer fixed cylinder with no relative tor-
sional motion (See, 2000). A pseudorandom noise dis-
placement is used for the motion, and the force F(f) acting
on the outer cylinder and sample vessel are detected,
enabling determination of the dynamic viscoelastic prop-
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Fig. 5. The storage modulus G'(l) and loss modulus G" (A)
versus oscillation frequency (f= @¥2m) of a polymer-
modified bitumen obtained with pseudorandom noise and
the oscillatory imbedded needle method.
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Fig. 6. A schematic diagram of the concentric cylinder apparatus
(section 3.3). The inner cylinder slides through the sam-

ple and the outer fixed cylinder, which is fixed to an
acrylic vessel (outermost boundaries omitted for clarity).

Dealy and Giacomin, 1998). Particularly noteworthy in the
context of the oscillatory methods discussed in this paper
are experiments which have used axially oscillated con-
centric cylinders : Bikerman (1948) who measured vis-
cosity of solutions of rosin in turpentine and rosin in
benzyl benzoate, and Smith er al. (1949) who examined
solutions of polyvinyl acetate in cyclohexane and poly-
isobutylene in xylene. More recent reports using this defor-
mation geometry include Hibberd and Parker (1975) who
studied the viscoelastic properties of bread doughs, McCar-
thy (1978) on polymer melts, and Tsai and Soong (1985)
on concentrated polymer solutions. These previous works
have all used single frequency sinusoids for the input dis-
placement of one of the cylinders, and most used a solid
inner cylinder.

See (2000) used the pseudorandom noise technique, and
a hollow inner cylinder to increase the “wetted” surface
area and hence the force sensitivity. The experimental set-
up parallels that of the oscillatory squeezing flow and
imbedded needle configurations, described previously. The
Terfenol-D driver was centrally attached to the top of the
brass inner cylinder, and the brass outer cylinder and
acrylic sample vessel were rigidly fixed to the piezoelectric
load cell underneath. Referring to Fig. 6, the dimensions
are (all lengths in mm): »,=2.5, r, =3.0, r,=3.5, r,=4.0,
hy=8.0, h,=13.0, h,=72, hy= 1.9

As with the previous two geometries, we require the gov-
erning equation relating the instantaneous resistance force
F(p) to the inner cylinder motion W(s). The detailed cal-
culations can be found in See (2000), but the first step is to
find the equation relating the force F to the instantaneous
downward velocity V of the inner cylinder when a New-
tonian liquid is used. Assuming laminar flow and ignoring
fluid inertia, fluid dynamics calculations give us (See,
2000):

F=konnlV (3.7

Here 1 is the Newtonian viscosity, and k. is an instru-
ment geometry factor defined as follows:

Keone = 27tho[2f/g+1/In R+ 1/In (R\/R)] (3.8)
with

2 2 2
f= (RO_]‘)_(RI_Ri) (39)

In R, | R,
! (R,-)

and
erties of the fluid which occupies the annulus between the R Ri_R?
cylinders. g:(R%«l){R&Jr]—h;);g }+(R%—R,2) R3+R%—L—)
Similar geometries have been reported for measurements 0 In (&)
. . . R;
of steady viscosity etc, and several reviews of these works !
are available (Oka, 1960; Bird et al., 1987; Whorlow, 1992; 3.10)
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We have used here R, = ry/r,, R, =r/r, and R;=r/r,.

The correspondence principle allows us to convert this
Newtonian liquid result to one for a viscoelastic fluid
undergoing small amplitude oscillatory displacements
W(t) = Wee'™ about the position shown in Fig. 6. The
instantaneous force will thus also be a sinusoid F(f) =
F*¢™ with F* given by

F* =k, ,,.G*W, (3.11)
where k., i$ given by eq(3.8). We see again that this equa-
tion is of the general form eq(2.10), meaning that band-
limited pseudorandom noise can be used as the input dis-
placement signal with Fourier analysis of the force signal
to give the frequency dependent material properties.

A series of experiments was carried out employing this
concentric cylinder configuration with pseudorandom noise,
using high viscosity silicone oils with different molecular
weights (See, 2000). In these tests the equation was used
directly without any frequency domain equalization, but
similar to the imbedded needle case in Section 3.2, rea-
sonable agreement was observed between the material
properties found by this method and those obtained with
the parallel plate configuration.

3.4. Other geometries

As the above applications show, provided the force-dis-
placement relation is known (the general relation eq(2.10)),
a wide range of deformation geometries can in principal be
used to determine linear viscoelastic properties. Further,
the linear nature of these relations permits the use of a
band-limited pseudorandom noise excitation sequence for
the displacement signal, with Fourier analysis of the force
signal giving the frequency dependent viscoelastic prop-
erties. For any deformation geometry, key assumptions are
that the sample maintains adhesion throughout the motion
cycle, and that the displacement amplitudes are small com-
pared to other instrument length scales.

Other deformation geometries include the imbedded pad-
dle geometry of the Strathclyde curemeter, as discussed in
section 3.2. A similar approach was adopted by Shikata er
al. (1997) who oscillated small glass plates inserted nor-
mally into liquid-like samples to determine the viscosity.
There are numerous non-conventional rheometer geome-
tries which have been originally designed for measure-
ments of steady viscosity, but which could be used for
determination of viscoelastic properties if the force-dis-
placement relation (eq(2.10)) is available (e.g. rheometers
based on parallel sliding plates, etc; see reviews by
Mackay, 1993; 1998).

There is an extensive body of literature on elastic contact
problems - see for example, the books by Johnson (1987)
and Hills er al. (1993). Provided that the relationship
between displacement and force is linear and the boundary
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conditions do not change fundamentally with the inden-
tation (as discussed in Pipkin, 1986), we can use these elas-
tic results via the correspondence principle to obtain the
force-displacement equations for the corresponding oscil-
latory contact problems on a viscoelastic halfspace. For
example, Pipkin (1986) discusses the case of a flat-headed
circular punch (radius R} pressed normally onto a halfspace
with displacement W;. As discussed in Johnson (1987) it is
possible to mathematically account for the infinite pressure
located right at the edges of the sharp square corners in this
problem. Pipkin (1986) showed that, in general, the force
F can be written F = Rg(V)GW, where the function g(Vv) is
a pure number depending on Poisson's ratio v (Pipkin,
1986). For the same punch undergoing small amplitude
oscillations on the viscoelastic halfspace, the governing
formula becomes F* = RgG*W, (letting v=1/2 - Pipkin,
1986).

Finally, we point out that up to now all the probes pre-
sented in this paper have been oscillated normally to the
sample surface, but in fact the oscillations could be applied
at an angle to the interface. For example, small amplitude
oscillations could be applied at the contacting area tan-
gentially to the surface and, provided that the sample
adheres to the probe surface and that the linear force-dis-
placement relation can be determined (eq(2.10)), an instru-
ment operating in this mode could in principle be used to
measure viscoelastic properties.

4. Other issues

4.1, Inertia effects

It is well known that in any rheometer design where the
samples are placed under oscillatory strains, fluid inertia
effects can arise (Walters, 1975; Ferry, 1980; Whorlow,
1992). The effect is more pronounced for lower viscosity
fluids at high oscillation frequencies (e.g. Field et al.,
1996; Phan-Thien er al., 1996). The contribution of fluid
inertia to the measured force response is essentially a
(mass) X (acceleration) term resulting from the fluid
motion, and will act in anti-phase to G' thus reducing the
measured value of this quantity. The reduction in G'(@)
due to fluid inertia is proportional to -pa’, where p is the
density of the fluid, and the numerical prefactor needs to be
calculated from first principles for each flow geometry.
Theoretically G" is unaffected by inertial effects.

For the oscillatory squeeze flow discussed in section 3.1,
an inertia correction for G' has been theoretically derived
from first principles by Phan-Thien er al. (1996). These
workers carried out small strain analysis and asymptotic
expansions based on the Stokes number, and found that G'
was reduced by the following amount AG"

AG () = % oh} @ @.1)
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4.2. Larger amplitudes and non-linear viscoelas-
ticity

With any of the devices discussed in section 3, under
large strain amplitudes the response may no longer be in
the linear viscoelastic regime. 1t is sometimes useful to
deliberately apply large amplitude displacements in order
to find the critical strain for linear viscoelasticity, as well as
to illuminate features of the response under large defor-
mations. For example, using the oscillatory squeeze flow
instrument (Sect. 3.1) with a single frequency excitation,
See and co-workers (See et al., 1997; See et al., 1999a)
have studied the response of a yield stress material (elec-
trorheological fluid under high electric field), and observed
that the yielding behaviour is clearly manifested in the non-
harmonic shape of the force signal. Other works which
have used large amplitude oscillatory squeeze flow include
Phan-Thien er al. (2000) who examined the non-linear
behaviour of biological tissue (amplitudes up to 20 ym
using a 1 mm gap), and Jiang et al. (2001) who monitored
the change from linear to non-linear viscoelastic behaviour
at fixed strain amplitude during the setting of a dental com-
posite cement. It should be noted that the pseudorandom
noise signal cannot be employed in these tests since the
principle of linear superposition does not hold for non-har-
monic behaviour, and hence single frequency sinusoids
were used (usually at 10 Hz or 20 Hz). It should also be
pointed out that some care is needed in interpreting the
results since most of these geometries do not impose spa-
tially unitorm strain fields to the sample. Thus these tests
are more of a qualitative indication as to the onset and
degree of non-linear viscoelastic behaviour.

5. Conclusions

This paper presents an overview of recent developments
in the use of band-limited pseudorandom noise strain sig-
nals with novel deformation geometries to determine linear
viscoelastic properties. The use of the pseudorandom noise
displacements facilitates rapid testing with high data den-
sity in the frequency domain. This rapidity is useful, for
example, when monitoring changes with time in the rheo-
logical properties of a sample (e.g. materials undergoing
cure or set). Viscoelastic instruments with a probe-type
geometry, such as the imbedded oscillating needle (Sect
3.2), are able to measure properties of materials with solid-
like characteristics with minimal sample preparation. The
variety of examples presented in this paper (oscillatory
squeeze flow (Sect. 3.1), needle (Sect. 3.2), sliding con-
centric cylinders (Sect.3.3)) demonstrates the wide utility
of this general approach.

As discussed in section 2.1, a common feature of the dif-
ferent geometries is that the relation between force (F*)
and displacement (W = W) has the form F* = kG*W,,
where G* is the complex modulus and k is a constant
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depending on the instrument geometry. To determine £, the
correspondence principle of linear viscoelasticity is found
to be very useful, since it enables analytical solutions
obtained with elastic solids or Newtonian liquids to be con-
verted to the case of a viscoelastic matrix.

The use of pseudorandom noise signals is still compar-
atively uncommon in rheometry and some of the important
issues that should be considered, such as the possibility of
aliasing and the use of transfer functions to improve data
quality, have been outlined in sections 2.2 and 2.3. As can
be seen in the examples presented in section 3, if care is
exercised, the general approach described in this paper
appears to have great potential for rapid measurement of
linear viscoelastic properties of samples which are solid-
like or are difficult to prepare into the form required by
conventional rotational rheometers. It is hoped that this
review stimulates the development of further rheological
techniques for efficient characterisation of linear viscoelas-
ticity.
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