• Title/Summary/Keyword: oscillation of optical fiber

Search Result 27, Processing Time 0.025 seconds

Evaluation on Characteristics of Unsteady Combustion and Combustion Oscillation (비정상연소의 특성과 연소진동 평가)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.125-130
    • /
    • 2011
  • The characteristics of unsteady combustion were experimentally investigated using confined premixed flames stabilized by a rearward-facing step. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations and it has usually desirable performance such as high load combustion and low pollutant emission. It is known that combustion oscillation is occurred if Rayleigh's criterion is satisfied. The pressure fluctuation and OH-emission fluctuation were measured using pressure transducer and OH optical fiber respectively and then cross-corelation and phase difference were calculated to apply Rayleigh's criterion.

10 GHz wavelength tunable mode-locked filber ring laser configured with all polarization maintaining fiber (편광유지 광섬유로 구성된 10 GHz 파장가변 모드록킹 광섬유 고리형 레이저 제작 및 특성연구)

  • 김봉규;김명욱;전영민;이정찬;김상국;최상삼
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.270-273
    • /
    • 1998
  • We have demonstrated the wavelength tunable ultrashort pulse fiber ring laser proposed the novel method for measuring the cavity loss from relaxation oscillation frequency and the pump power. To suppress the polarization instability the laser cavity is configured with polarization maintaining fibers and to control the center wavelength a 2.4 nm bandwidth tunable wavelength filter was inserted in the cavity. The laser has 8 picosecond pulse width, 10 GHz repetition rate and 1.2 mW average power in 1530-1560 nm operation range.

  • PDF

A Wide-range Tunable Wavelength-stabilization Technique for Semiconductor Lasers

  • Chen, Han;Qiao, Qinliang;Min, Jing;He, Cong;Zhang, Yuanyuan
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.384-390
    • /
    • 2021
  • This paper presents a wide-range tunable wavelength-locking technology based on optoelectronic oscillation (OEO) loops for optical fiber sensors and microwave photonics applications, explains the theoretical fundamentals of the design, and demonstrates a method for locking the relative wavelength differences between a leader semiconductor laser and its follower lasers. The input of the OEO loop in the proposed scheme (the relative wavelength difference) determines the radio-frequency (RF) signal frequency of the oscillation output, which is quantized into an injection current signal for feedback to control the wavelength drift of follower lasers so that they follow the wavelength change of the leader laser. The results from a 10-hour continuous experiment in a field environment show that the wavelength-locking accuracy reached ±0.38 GHz with an Allan deviation of 6.1 pm over 2 hours, and the wavelength jitter between the leader and follower lasers was suppressed within 0.01 nm, even though the test equipment was not isolated from vibrations and the temperature was not controlled. Moreover, the tunable range of wavelength locking was maintained from 10 to 17 nm for nonideal electrical devices with limited bandwidth.

Performances of gain-clamped EDFAs with different optical feedback wavelengths for use in WDM networks (WDM네트웍을 위한 광 귀환에 의해 이득이 고정된 EDFA의 귀환 파장에 따른 특성)

  • Kim, Sang-Yong;Chung, Joon;Chae, Cahgn-Joon;Lee, Byoung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.236-240
    • /
    • 1997
  • We compare feedback wavelength-dependent performances of all-optical gain-clamped 980-nm pumped erbium-doped fiber amplifiers. In a 2.5-Gbps 8-channel WDM system, we have measured and compared gain compressions, signal power variations due to cross-saturation, power penalties caused by relaxation oscillations and noise figures for three different feedback wavelengths - 1532, 1543, and 1565 nm.

  • PDF

Wavelength Interrogation Technique for Bragg Reflecting Strain Sensors Based on Arrayed Waveguide Grating (도파로 어레이 격자를 이용한 광섬유 브래그 스트레인 센서의 반사파장 신호 복원 기술)

  • Seo, Jun-Kyu;Kim, Kyung-Jo;Oh, Min-Cheol;Lee, Sang-Min;Kim, Young-Jae;Kim, Myung-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • Fiber-optic strain sensors based on Bragg reflection gratings produce the change of reflection spectrum when an external stress is applied on the sensor. To measure the Bragg reflection wavelength in high speed, an arrayed waveguide grating device is incorporated in this work. By monitoring the output power from each channel of the AWG, the peak wavelength corresponding to the applied strain could be obtained. To enhance the accuracy of the AWG wavelength interrogation system, a chirped fiber Bragg grating with a 3-dB bandwith of 5.4 nm is utilized. The high-speed response of the proposed system is demonstrated by measuring a fast varying strain produced by the damped oscillation of a cantilever. An oscillation frequency of 17.8 Hz and a damping time constant of 0.96 second are obtained in this measurement.

Experimental Investigation of a High-repetition-rate Pr3+:YLF Laser with Single-frequency Oscillation

  • Dai, Weicheng;Jin, Long;Dong, Yuan;Jin, Guangyong
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.721-729
    • /
    • 2021
  • We demonstrate a Pr3+:YLF 639.7-nm laser with single-frequency output based on the Q-switched pre-lase technology, pumped by a fiber-coupled GaN blue laser diode. The pre-lase technology is realized by the step-type loss of the acousto-optical Q-switched device. The conclusions of the theoretical research are verified experimentally. The mode-suppression ratio was 44 dB at the single-frequency laser output. Detection by interferometer verified the realization of the stable single-frequency laser. In addition, the emission spectrum had a linewidth of 139.9 MHz, measured by Fabry-Perot interferometer. The single-frequency laser's single-peak power was over 19.7 W with 98.8-ns pulse duration, obtained under an absorption power of 1.74 W.

Circuit Model for the Effect of Nonradiative Recombination in a High-Speed Distributed-Feedback Laser

  • Nie, Bowen;Chi, Zhijuan;Ding, Qing-an;Li, Xiang;Liu, Changqing;Wang, Xiaojuan;Zhang, Lijun;Song, Juan;Li, Chaofan
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.434-440
    • /
    • 2020
  • Based on single-mode rate equations, we present an improved equivalent-circuit model for distributed-feedback (DFB) lasers that accounts for the effects of parasitic parameters and nonradiative recombination. This equivalent-circuit model is composed of a parasitic circuit, an electrical circuit, an optical circuit, and a phase circuit, modeling the circuit equations transformed from the rate equations. The validity of the proposed circuit model is verified by comparing simulation results to measured results. The results show that the slope efficiency and threshold current of the model are 0.22 W/A and 13 mA respectively. It is also shown that increasing bias current results in the increase of the relaxation-oscillation frequency. Moreover, we show that the larger the bias current, the lower the frequency chirp, increasing the possibility of extending the transmission distance of an optical-fiber communication system. The results indicate that the proposed circuit model can accurately predict a DFB laser's static and dynamic characteristics.