• Title/Summary/Keyword: oscillation control

Search Result 498, Processing Time 0.025 seconds

An InGaP/GaAs HBT Monolithic VCDRO with Wide Tuning Range and Low Phase Noise

  • Lee Jae-Young;Shrestha Bhanu;Lee Jeiyoung;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2005
  • The InGaP/GaAs hetero-junction bipolar transistor(HBT) monolithic voltage-controlled dielectric resonator oscillator(VCDRO) is first demonstrated for a Ku-band low noise block down-converter(LNB) system. The on-chip voltage control oscillator core employing base-collector(B-C) junction diodes is proposed for simpler frequency tuning and easy fabrication instead of the general off-chip varactor diodes. The fabricated VCDRO achieves a high output power of 6.45 to 5.31 dBm and a wide frequency tuning range of ]65 MHz( 1.53 $\%$) with a low phase noise of below -95dBc/Hz at 100 kHz offset and -115 dBc/Hz at ] MHz offset. A]so, the InGaP/GaAs HBT monolithic DRO with the same topology as the proposed VCDRO is fabricated to verify that the intrinsic low l/f noise of the HBT and the high Q of the DR contribute to the low phase noise performance. The fabricated DRO exhibits an output power of 1.33 dBm, and an extremely low phase noise of -109 dBc/Hz at 100 kHz and -131 dBc/Hz at ] MHz offset from the 10.75 GHz oscillation frequency.

Visual Cues in Essential Tremor (본태성 진전에서 시각의 영향)

  • Seo, Man-Wook;Koller, William C
    • Annals of Clinical Neurophysiology
    • /
    • v.2 no.2
    • /
    • pp.114-118
    • /
    • 2000
  • Purpose : The pathophysiology of essential tremor(ET) remains unknown. PET studies of ET showed some conflicting data. One study reported significant glucose hypermetabolism of the medulla and thalami, but other studies reported abnormal bilateral overactivity of cerebellar and red nuclear connections. The previous experimental studies suggested that each PET finding reflects a part of neural circuit which is responsible for ET. So it can be imagined that olivocerebellar oscillation may be transmitted by the way of cerebellar projections to the thalamus in ET. It has been reported that the cerebellar dentate nucleus neurons are involved in the generation and/or guidance of movement based on visual cues. The purpose of this study is to clarify the role of dentato-thalamic tract in ET. Methods : Tremor amplitudes were recorded as each patient perform two kinds of task, one involving sensory-guided movement and the other involving memory-guided movement. Each patient was asked to move his/her index finger following a smoothly moving target. He/She also was asked to perform the same movements with his/her eyes closed ET. Results : The results showed that average amplitudes of tremor were significantly higer during visually guided task than during memory guided task in ET patients. Conclusions : Our results led us to conclude that dentato-thalamic tract might be related to the control of tremor in ET.

  • PDF

The operational characteristics of the AT Forward Multi-Resonant Converter (AT 포워드 다중 공진형 컨버터의 동작 특성)

  • 김창선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.114-123
    • /
    • 1998
  • The multi-resonant converter(MRC) minimizes a parasitic oscillation by using the resonant tank circuit absorbed parasitic reactances existing in a converter circuit. So it si possible that the converter operated at a high frequency has a high efficiency because the losses are reduced. Such a MHz high frequency applications provide a high power density [W/inch3] of the converter. But the resonant voltage stress across a switch of the resonant tank circuit is 4~5 times a input voltage. This h호 voltage stress increases the conduction loss because of on-resistance of a MOSFET with higher rating. Thus, in this paper we proposed the alternated multi-resonant converter (AT MRC) differ from the clamp mode multi-resonant converter and applicated it to the forward MRC. The AT forward MRC can reduce the voltage stress to 2~3 times a input voltage by using two series input capacitor. The control circuit is simple because tow resonant switches are driven directly by the output pulse of the voltage controled oscillator. This circuit type is verified through the experimental converter with 48V input voltage, 5V/50W output voltage/power and PSpice simulation. the measured maximum voltage stress is 170V of 2.9 times the input voltage and the maximum efficiency of 81.66% is measured.

  • PDF

Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method

  • Zhao, Yaobing;Sun, Ceshi;Wang, Zhiqian;Peng, Jian
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.487-500
    • /
    • 2014
  • An analytical solution for the nonlinear in-plane free oscillations of the suspended cable which contains the quadratic and cubic nonlinearities is investigated via the homotopy analysis method (HAM). Different from the existing analytical technique, the HAM is indeed independent of the small parameter assumption in the nonlinear vibration equation. The nonlinear equation is established by using the extended Hamilton's principle, which takes into account the effects of the geometric nonlinearity and quasi-static stretching. A non-zero equilibrium position term is introduced due to the quadratic nonlinearity in order to guarantee the rule of the solution expression. Therefore, the mth-order analytic solutions of the corresponding equation are explicitly obtained via the HAM. Numerical results show that the approximate solutions obtained by using the HAM are in good agreement with the numerical integrations (i.e., Runge-Kutta method). Moreover, the HAM provides a simple way to adjust and control the convergent regions of the series solutions by means of an auxiliary parameter. Finally, the effects of initial conditions on the linear and nonlinear frequency ratio are investigated.

New Serial and Parallel Sin+Cos PSS1A PSS Design and Analysis

  • Lee Sang-Seung;Li Shan-Ying;Jang Gwang-Soo;Park Jong-Keun;Moon Seung-Il;Yoon Yong-Tae
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.378-384
    • /
    • 2005
  • This paper proposes a new series and parallel Sin+Cos PSS (power system stabilizer) for the purpose of improving the existing PSS1A's performance. The purpose of the PSS is to enhance the damping of power system oscillations through injection of auxiliary signals for an excitation control terminal. The proposed series and parallel Sin+Cos PSS is connected adding the Sin+Cos terms additionally with the serial and parallel connection in a conventional PSS1A. The proposed controller is aimed at considering the damping of oscillation when it changes parameter fluctuations or operational load variations in a power system. The electric power system used is the KEPCO system and the voltage of the power transmission line is 154kV and 345kV. The PSCAD/EMTDC package is used to authorize the effect of the proposed controller. Simulations were shown by and compared with the waveforms for frequency, voltage and electric power.

DNA coding-Based Fuzzy System Modeling for Chaotic Systems (DNA 코딩 기반 카오스 시스템의 퍼지 모델링)

  • Kim, Jang-Hyun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.524-526
    • /
    • 1999
  • In the construction of successful fuzzy models and/or controllers for nonlinear systems, the identification of a good fuzzy inference system is an important yet difficult problem, which is traditionally accomplished by a time-consuming trial-and-error process. In this paper, we propose a systematic identification procedure for complex multi-input single-output nonlinear systems with DNA coding method. A DNA coding method is optimization algorithm based on biological DNA as conventional genetic algorithms(GAs) are. The strings in the DNA coding method are variable-length strings, while standard GAs work with a fixed-length coding scheme. the DNA coding method is well suited to learning because it allows a flexible representation of a fuzzy inference system. We also propose a new coding method fur applying the DNA coding method to the identification of fuzzy models. This coding scheme can effectively represent the zero-order Takagi-Sugeno(TS) fuzzy model. To acquire optimal TS fuzzy model with higher accuracy and economical size, we use the DNA coding method to optimize the parameters and the number of fuzzy inference system. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its application to a Duffing-forced oscillation system.

  • PDF

Oscillation Characteristics of the Multi-Layered VCO for using 960 MHz Band (960 MHz 다층구조 VCO 발진특성)

  • Rhie, Dong-Hee;Park, Gwi-Nam;Lee, Hun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.653-656
    • /
    • 2002
  • In this paper, we present the simulation results of multi-layer VCO(voltage controlled oscillator), which is composed of resonator, oscillator, and buffer circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for obtaining the EM(Electromagnetic) characteristics of conductor pattern as well as designing the multi-layer VCO. Obtained EM characteristics were used as real components in nonlinear RF circuit simulation. Finally the overall VCO was simulated by the nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was DuPont 951AT, which will be applied for LTCC process. The structure of multi-layer VCO is constructed with 4 conducting layer. Simulated results showed that the output level was about 4.5 [dBm], the phase noise was -104 [dBc/Hz] at 30 [kHz] offset frequency, the harmonics -8 dBc, and the control voltage sensitivity of 30 [MHz/V] with a DC current consumption of 9.5 [mA]. The size of VCO is $6{\times}9{\times}2$ mm(0.11[cc]).

  • PDF

Advanced Small-Signal Model of Multi-Terminal Modular Multilevel Converters for Power Systems Based on Dynamic Phasors

  • Hu, Pan;Chen, Hongkun;Chen, Lei;Zhu, Xiaohang;Wang, Xuechun
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.467-481
    • /
    • 2018
  • Modular multilevel converter (MMC)-based high-voltage direct current (HVDC) presents attractive technical advantages and contributes to enhanced system operation and reduced oscillation damping in dynamic MMC-HVDC systems. We propose an advanced small-signal multi-terminal MMC-HVDC based on dynamic phasors and state space for power system stability analysis to enhance computational accuracy and reduce simulation time. In accordance with active and passive network control strategies for multi-terminal MMC-HVDC, the matchable small-signal stability models containing high harmonics and dynamics of internal variables are conducted, and a related theoretical derivation is carried out. The proposed advanced small-signal model is then compared with electromagnetic-transient and traditional small-signal state-space models by adopting a typical multi-terminal MMC-HVDC network with offshore wind generation. Simulation indicates that the advanced small-signal model can successfully follow the electromechanical transient response with small errors and can predict the damped oscillations. The validity and applicability of the proposed model are effectively confirmed.

The Error Analysis of measuring wind speed on Met Mast Shading Effect (기상탑 차폐 영향에 따른 측정 풍속의 오차 분석)

  • Ko, Suk-Whan;Jang, Moon-Seok;Lee, Yoon-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • In the performance test for wind turbines of medium and large, The reference met-mast should be installed for measurement reference wind speed as IEC 61400-12-1 standards and design of booms for mounted an anemometer must be considered exactly. Boom-mounted cup anemometer are influenced by flow distortion of the mast and the boom. Therefore design of booms must be important so that flow distortion due to booms should be kept below 0.5%. But, in some cases at size of met-mast structure, the distance of boom from mast is longer then measurement of wind speed is impossible because of oscillation of boom-mounted anemometer. In this paper, We measured a wind speed at several point from mast and boom and we analyzed the error of wind speed at each point of measurement. Also, we will suggest a correction method using the data curve fitting about errors of wind speed between each point of mounted anemometer.

Effect of Ultrasonic Frequency on the Atomization Characteristics of Single Water Droplet in an Acoustic Levitation Field (음향 부양장(acoustic levitation field)에서 초음파 주파수(ultrasonic frequency)에 따른 단일 액적의 미립화 특성)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.126-131
    • /
    • 2013
  • This paper describes the effect of ultrasonic frequency(f) on the atomization and deformation characteristics of single water droplet in an acoustic levitation field. To achieve this, the ultrasonic levitator that can control sound pressure and velocity amplitude by changing frequency was installed, and visualization of single water droplet was conducted with high resolution ICCD and CCD camera. At the same time, atomization and deformation characteristics of single water droplet was studied in terms of normalized droplet diameter($d/d_0$), droplet diameter(d) variation and droplet volume(V) variation under different ultrasonic frequency(f) conditions. It was revealed that increase of ultrasonic frequency reduces the droplet diameter. Therefore, it is able to levitate with low sound pressure level. It also induces the wide oscillation range, large diameter and volume variation of water droplet. In conclusion, the increase of ultrasonic frequency(f) can enhance the atomization performance of single water droplet.