• Title/Summary/Keyword: orthogonal transmission

Search Result 481, Processing Time 0.026 seconds

A PAPR Reduction Technique by the Partial Transmit Reduction Sequences (부분 전송 감소열에 의한 첨두대 평균 전력비 저감 기법)

  • Han Tae-Young;Yoo Young-Dae;Choi Jung-Hun;Kwon Young-Soo;Kim Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.562-573
    • /
    • 2006
  • It is required to reduce the peak-to-average power ratio(PAPR) in an orthogonal frequency division multiplexing system or a multicarrier system. And it is needed to eliminate the transmission of the side information in the Partial Transmit Sequences. So, in this paper, a new technique is proposed, where the subcarriers used for the multiple signal representation are only utilized for the reduction of PAPR to eliminate the burden of transmitting the side information. That is, it is proposed by taking the modified minimization criteria of partial transmit sequences scheme instead of using the convex optimization or the fast algorithm of tone reservation(TR) technique As the result of simulation, the PAPR reduction capability of the proposed method is improved by 3.2 dB dB, 3.4 dB, 3.6 dB with M=2, 4, 8(M is the number of partition in the so-called partial transmit reduction sequences(PTRS)), when the iteration number of fast algorithm of TR is 10 and the data rate loss is 5 %. But it is degraded in the capability of PAPR reduction by 3.4 dB, 3.1 dB, 2.2 dB, comparing to the TR when the data rate loss is 20 %. Therefore, the proposed method is outperformed the TR technique with respect to the complexity and PAPR reduction capability when M=2.

Noise Whitening Decision Feedback Equalizer for SC-FDMA Receivers (SC-FDMA 수신기를 위한 잡음 백색화 판정궤환 등화기)

  • Lee, Su-Kyoung;Park, Yong-Hyun;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.986-995
    • /
    • 2011
  • In this paper, we propose a noise whitening decision feedback equalizer for single carrier frequency division multiple access (SC-FDMA) receivers. SC-FDMA has the same advantage as that of orthogonal frequency division multiple access (OFDMA) in which the multipath effect can be removed easily, and also solves the problem of high peak to average power ratio (PAPR) which is the main drawback of OFDMA. Although SC-FDMA is a single carrier transmission scheme, a simple frequency domain linear equalizer (FD-LE) can be implemented as in OFDMA, which can dramatically reduce the equalizer complexity. Moreover, some residual intersymbol interference in the output of the FD-LE can be further removed by an additional nonlinear decision feedback equalizer (DFE) in time domain, because the time domain signal is a digitally modulated symbol. In the conventional DFE, however, the noise is not white at the input of the decision device and correspondingly the decision is not optimum. In this paper, we propose an improved DFE scheme for SC-FDMA systems where a linear noise whitening filter is inserted before the decision device of the conventional DFE scheme. Through computer simulations, we compare the bit error rate performance of the proposed DFE scheme with the conventional equalizers.

Design and Implementation of Multi-channel FFT Processor for MIMO Systems (MIMO 시스템을 위한 다채널 FFT 프로세서의 설계 및 구현)

  • Jung, Yongchul;Cho, Jaechan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.659-665
    • /
    • 2017
  • In this paper, a low complexity fast Fourier transform(FFT) processor is proposed for multiple input multiple output(MIMO) systems. The IEEE 802.11ac standard has been adopted along with the demand for a system capable of high channel capacity and Gbps transmission in order to utilize various multimedia services using a wireless LAN. The proposed scalable FFT processor can support the variable length of 64, 128, 256, and 512 for 8x8 antenna configuration as specified in IEEE 802.11ac standard with MIMO-OFDM scheme. By reducing the required number of non-trivial multipliers with mixed-radix(MR) and multipath delay commutator(MDC) architecture, the complexity of the proposed FFT processor was dramatically decreased. Implementation results show that the proposed FFT processor can reduced the logic gate count by 50%, compared with the radix-2 SDF FFT processor. Also, compared with the 8-channel MR-2/2/2/4/2/4/2 MDC processor and 8-channel MR-2/2/2/8/8 MDC processor, it is shown that the gate count is reduced by 18% and 17% respectively.

The viterbi decoder implementation with efficient structure for real-time Coded Orthogonal Frequency Division Multiplexing (실시간 COFDM시스템을 위한 효율적인 구조를 갖는 비터비 디코더 설계)

  • Hwang Jong-Hee;Lee Seung-Yerl;Kim Dong-Sun;Chung Duck-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.61-74
    • /
    • 2005
  • Digital Multimedia Broadcasting(DMB) is a reliable multi-service system for reception by mobile and portable receivers. DMB system allows interference-free reception under the conditions of multipath propagation and transmission errors using COFDM modulation scheme, simultaneously, needs powerful channel error's correction ability. Viterbi Decoder for DMB receiver uses punctured convolutional code and needs lots of computations for real-time operation. So, it is desired to design a high speed and low-power hardware scheme for Viterbi decoder. This paper proposes a combined add-compare-select(ACS) and path metric normalization(PMN) unit for computation power. The proposed PMN architecture reduces the problem of the critical path by applying fixed value for selection algorithm due to the comparison tree which has a weak point from structure with the high-speed operation. The proposed ACS uses the decomposition and the pre-computation technique for reducing the complicated degree of the adder, the comparator and multiplexer. According to a simulation result, reduction of area $3.78\%$, power consumption $12.22\%$, maximum gate delay $23.80\%$ occurred from punctured viterbi decoder for DMB system.

A MB-OFDM UWB Receive Design and Evaluation Using 4. Parallel Synchronization Architecture (4 병렬 동기 구조를 이용한 MB-OFDM UWB 수신기 설계 및 평가)

  • Shin Cheol-Ho;Choi Sangsung;Lee Hanho;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1075-1085
    • /
    • 2005
  • The purpose of this paper is to design the architecture for synchronization of MB-OFDM UWB system that is being processed the standardization for Alt-PHY of WPAN(Wireless Personal Area Network) at IEEE802.15.3a and to analyze the implementation loss due to 4 parallel synchronization architecture for design or link margin. First an overview of the MB-OFDM UWB system based on IEEE802.15.3a Alt-PHY standard is described. The effects of non-ideal transmission conditions of the MB-OFDM UWB system including carrier frequency offset and sampling clock offset are analyzed to design a full digital architecture for synchronization. The synchronization architecture using 4-parallel structure is then proposed to consider the VLSI implementation including algorithms for carrier frequency offset and sampling clock offset to minimize the effects of synchronization errors. The overall performance degradation due to the proposed synchronization architecture is simulated to be with maximum 3.08 dB of the ideal receiver in maximum carrier frequency offset and sampling clock offset tolerance fir MB-OFDM UWB system.

Analysis of an OFDM Transmission Scheme Using Groupwise Variable Length OCM (그룹별 가변 길이 직교코드 다중화를 이용한 OFDM 전송방식의 성능분석)

  • 권기범;오성근;선우명훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.450-453
    • /
    • 2003
  • 본 논문에서는 그룹별 가변 길이 직교코드 다중화를 이용한 OFDM (orthogonal frequency division multiplexing) 전송방식의 제안하고, 그룹별로 동일한 부반송파 개수를 가정하여 코드 길이에 따른 시스템 성능과 복잡도를 분석함으로써 최적의 시스템 파라미터들을 결정한다. 제안된 방식에서는 상호 상관성이 낮은 부반송파들로 동일 반송파 그룹으로 구분함으로써 부반송파 전체를 다수의 부반송파 그룹으로 나누고, 그룹마다 부반송파 개수와 동일한 길이의 직교코드들을 사용하여 다중화하여 전송한다. 따라서, 제안된 시스템을 사용하면 적절한 시스템 파라미터의 선정을 통하여 부반송파 전체를 하나의 그룹으로 하는 기존의 직교코드 다중화 방식에[2] 비하여 다이버시티 이득은 유지하면서 시스템 복잡도를 크게 줄일 수 있다. 또한, 제안된 직교코드 다중화 전송방식에서는 수신기에서 직교코드들간의 직교성 복원이 필수적이며, 수신기에서 불완전한 채널등화는 인접한 직교코드들 간에 상호 간섭을 유발하는 요인이 된다. 따라서, 채널추정 오류의 정도가 증가함에 따라 직교코드들 간의 상호 간섭으로 인하여 증가하는 비트오류를 줄이기 위하여 채널추정 오류의 정도에 따라 블록길이와 블록 인터리버 구조를 조절하여 시스템을 최적화 한다. 가변 길이 직교코드로는 길이에 상관 없이 직교성을 유지하며 에너지의 균등 분배가 가능한 DFT (discrete Fourier transform) 코드를 사용한다. 최적 시스템 파라미터를 결정하기 위하여 모의실험을 통하여 코드 길이에 따른 시스템 성능을 분석한다. 또한, 채널추정 오류가 존재하는 경우에 시스템 성능을 분석한다. 마지막으로, 채널 부호화를 적용하는 경우에 시스템 파라미터들을 최적화함으로써 부호화 이득이 시스템 성능과 시스템 복잡도 감소, 채널추정 오류의 극복에 미치는 영향을 분석한다. nature, in contrast to physical theories that are of a geometrical nature. An application to the interpretation of intelligence is proposed, based on the "intelligence"of movement. Co layer from 1.4 to 1.6 nm was measured to be ranged from 0.004 to 0.021 ${\AA}$$\^$-1/.문에 기업간 관계를 연구하는 측면에서는 탐험적 연구성격이 강하다. 더 나아가 본 산업의 주된 연구가 질적이고 기업내부만을 연구했던 것에 비교하면 시초적이라고 할 수 있다. 또한 관계마케팅, CRM 등의 이론적 배경이 되고 있는 신뢰와 결속의 중요성이 재확인하는 결과도 의의라고 할 수 있다. 그리고 신뢰는 양사 간의 상호관계에서 조성될 수 있는 특성을 가진 반면, 결속은 계약관계 초기단계에서 성문화하고 규정화 할 수 있는 변수의 성격이 강하다고 할 수가 있다. 본 연구는 복잡한 기업간 관계를 지나치게 협력적 측면에서만 규명했기 때문에 많은 측면을 간과할 가능성이 있다. 또한 방법론적으로 일방향의 시각만을 고려했고, 횡단적 조사를 통하고 국내의 한 서비스제공업체와 관련이 있는 컨텐츠 공급파트너만의 시각을 검증했기 때문에 해석에서 유의할 필요가 있다. 또한 타당성확보 노력을 기하였지만 측정도구 면에서 엄격한 개발과정을 준수하지는 못했다. 향후에는 모바일 컨텐츠 파트너의 기업의 특성을 조사하여 관계성 변수와의 상호관련연구를 진행할 필요가 있다. 관계기간, 의존성, 거래처의 단/복수여부, 서비스 범주 등의 제반 변수를 고려하여 이러한 변수가 양사와의 관계성 변수에 어떤 영향이 있는가를 검증할 필요가 있다. 또한 신뢰,

  • PDF

PAPR Reduction Method of OFDM System Using Fuzzy Theory (Fuzzy 이론을 이용한 OFDM 시스템에서 PAPR 감소 기법)

  • Lee, Dong-Ho;Choi, Jung-Hun;Kim, Nam;Lee, Bong-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.715-725
    • /
    • 2010
  • Orthgonal Frequency Division Multiplexing(OFDM) system is effective for the high data rate transmission in the frequency selective fading channel. In this paper we propose PAPR(Peak to Average Power Ratio) reduction method of problem in OFDM system used Fuzzy theory that often control machine. This thesis proposes PAPR reducing method of OFDM system using Fuzzy theory. The advantages for using Fuzzy theory to reduce PAPR are that it is easy to manage the data and embody the hardware, and required smaller amount of operation. Firstly, we proposed simple algorithm that is reconstructed at receiver with transmitted overall PAPR which is reduced PAPR of sub-block using Fuzzy. Although there are some drawbacks that the operation of the system is increased comparing conventional OFDM system and it is needed to send the information about Fuzzy indivisually, it is assured that the performance of the system is enhanced for PAPR reducing. To evaluate the perfomance, the proposed search algorithm is compared with the proposed algorithm in terms of the complementary cumulative distribution function(CCDF) of the PAPR and the computational complexity. As a result of using the QPSK and 16QAM modulation, Fuzzy theory method is more an effective method of reducing 2.3 dB and 3.1 dB PAPR than exiting OFDM system when FFT size(N)=512, and oversampling=4 in the base PR of $10^{-5}$.

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

Principal component analysis in C[11]-PIB imaging (주성분분석을 이용한 C[11]-PIB imaging 영상분석)

  • Kim, Nambeom;Shin, Gwi Soon;Ahn, Sung Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 2015
  • Purpose Principal component analysis (PCA) is a method often used in the neuroimagre analysis as a multivariate analysis technique for describing the structure of high dimensional correlation as the structure of lower dimensional space. PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of correlated variables into a set of values of linearly independent variables called principal components. In this study, in order to investigate the usefulness of PCA in the brain PET image analysis, we tried to analyze C[11]-PIB PET image as a representative case. Materials and Methods Nineteen subjects were included in this study (normal = 9, AD/MCI = 10). For C[11]-PIB, PET scan were acquired for 20 min starting 40 min after intravenous injection of 9.6 MBq/kg C[11]-PIB. All emission recordings were acquired with the Biograph 6 Hi-Rez (Siemens-CTI, Knoxville, TN) in three-dimensional acquisition mode. Transmission map for attenuation-correction was acquired using the CT emission scans (130 kVp, 240 mA). Standardized uptake values (SUVs) of C[11]-PIB calculated from PET/CT. In normal subjects, 3T MRI T1-weighted images were obtained to create a C[11]-PIB template. Spatial normalization and smoothing were conducted as a pre-processing for PCA using SPM8 and PCA was conducted using Matlab2012b. Results Through the PCA, we obtained linearly uncorrelated independent principal component images. Principal component images obtained through the PCA can simplify the variation of whole C[11]-PIB images into several principal components including the variation of neocortex and white matter and the variation of deep brain structure such as pons. Conclusion PCA is useful to analyze and extract the main pattern of C[11]-PIB image. PCA, as a method of multivariate analysis, might be useful for pattern recognition of neuroimages such as FDG-PET or fMRI as well as C[11]-PIB image.

  • PDF