• Title/Summary/Keyword: orthogonal frequency division multiplexing (OFDM) system

Search Result 518, Processing Time 0.029 seconds

IS-OFDM performance analysis for narrow band interference channel (협대역 간섭 채널환경에서 IS-OFDM 성능 분석)

  • 강현정;이정재
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.119-123
    • /
    • 2003
  • In this paper, a new OFDM scheme, IS-OFDM(Interference Suppressing Orthogonal Frequency Division Multiplexing), which has the capabilities of suppressing narrow-band interference for wide-band wireless communication systems, is introduced. This IS-OFDM system is composed of the parallel stages of ordinary OFDM, and each sub-carrier contains all of the transmitted symbols. Using Hadamard sequences, the transmitted information symbols in the same sub-carriers are separated from the other sub-carriers in the receiver. After analyzing and evaluating the performance of IS-OFDM system using Monte-Carlo simulation, the effective improvements of performance in IS-OFDM compare favorably with that of a conventional OFDM system in a narrow-band channel, is shown.

  • PDF

A study on the new doppler effect compensation scheme for OFDM system (OFDM system에서 새로운 Doppler effect 보정 기법에 대한 연구)

  • Lee, Sim-Seok;Jeong, Chang-Ho;Gang, Du-Lee;Lee, Byeong-Seop
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • ODFM(Orthogonal Frequency Division Multiplexing) technique is suitable for high speed data transfer both in wired/wireless channels, and is actively studied recently. Among them, WiBro based on IEEE 802.16 uses ODFM as its core technology, and is currently trying to expand market through commercialization. Therefore, if it's used for high speed moving object(KTX, airplane..etc) in near future, there is a possibility of ICI(inter-carrier interference) to occur due to DFS(Doppler Frequency Shift), a critical weak point of ODFM System. This study suggests 3 compensation techniques for Doppler effects in ODFM system operating through satellite, and confirms improved performance through constellation and BER curve.

  • PDF

An Implementation Method of Frequency Offset Synchronization Using Compact CORDIC for OFDM Systems (OFDM 시스템에서 Compact CORDIC을 이용한 주파수 오프셋 동기화 구현 기법)

  • Lee Kyu-In;Yu Sung-Wook;Kim Jong-Han;Lee Jae-Kon;Cho Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.706-712
    • /
    • 2006
  • In this letter, we propose a compact CORDIC processor for implementation of carrier frequency synchronization block in an OFDM (Orthogonal Frequency Division Multiplexing) system. The compact CORDIC processor is proposed by using inherenct properties of an OFDM system for estimation and compensation of carrier frequency offset, and is composed of a compact CORDIC preprocessor and a compact CORDIC processor. The compact CORDIC preprocessor plays a role of normalizing input signal efficiently, and the compact CORDIC processor is proposed to perform the vectoring mode and rotational mode jointly in CORDIC operation for carrier frequency synchronization. It is shown by FPGA implementation that the proposed compact CORDIC processor can achieve better performance with a significantly reduced hardware complexity than the conventional CORDIC approach.

SC-FDE System Using Decision-Directed Method Over Time-Variant Fading Channels (시변 페이딩 채널에 대한 결정 지향 방식의 SC-FDE 시스템)

  • Kim, Ji-Heon;Yang, Jin-Mo;Kim, Whan-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.227-234
    • /
    • 2007
  • This paper describes a transmission method based on a single carrier with frequency domain equalization (SC-FDE) scheme with cyclic prefix(CP). The SC-FDE has similar features with orthogonal frequency division multiplexing(OFDM). Similar to OFDM, a SC-FDE system is computationally efficient since equalization is reformed on a block of data in the frequency domain. Especially, it has the advantage of low sensitivity to nonlinear distortion compared to OFDM. In this paper, we design a SC-FDE receiver using decision-directed method, and present simulation results.

A Mathematical Implementation of OFDM System with Orthogonal Basis Matrix (직교 기저행렬을 이용하는 직교 주파수분할다중화의 수학적 구현)

  • Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2731-2736
    • /
    • 2009
  • In this paper, a new implementation method of OFDM (orthogonal frequency division multiplexing) system with an orthogonal basis matrix is developed mathematically. The basis matrix is based on the Haar basis but has an appropriate form for modulation of multiple subchannel signals of OFDM. It is verified that the new basis matrix can be expanded with a simple recursive algorithm. The order of synthesis matrix in the transmitter is increased by the factor of two with every expansion. Demodulation in the receiver is carried out by its inverse matrix, which can be generated recursively with the orthogonal basis matrix. It is shown that perfect reconstruction of original signals is possibly achieved in the proposed OFDMsystem.

Joint Processing of Zero-Forcing Detection and MAP Decoding for a MIMO-OFDM System

  • Sohn, In-Soo;Ahn, Jae-Young
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.384-390
    • /
    • 2004
  • We propose a new bandwidth-efficient technique that achieves high data rates over a wideband wireless channel. This new scheme is targeted for a multiple-input multiple- output orthogonal frequency-division multiplexing (MIMO-OFDM) system that achieves transmit diversity through a space frequency block code and capacity enhancement through the iterative joint processing of zero-forcing detection and maximum a posteriori (MAP) decoding. Furthermore, the proposed scheme is compared to the coded Bell Labs Layered Space-Time OFDM (BLAST-OFDM) scheme.

  • PDF

Performance Comparison of Single-Carrier and Multi-Carrier Systems in a Terahertz Wireless Communication Environment

  • Asiedu, Derek Kwaku Pobi;Ahiadormey, Roger Kwao;Shin, Suho;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2019
  • This paper investigates the performance comparison of a Terahertz (THz) communications for a single-carrier and a multi-carrier single antenna point-to-point communication system. The multi-carrier system and single carrier system consider the orthogonal frequency division multiplexing (OFDM) and the minimum mean square error linear equalizer (MMSE-LE), respectively. We compare the frame-error-rate (FER) and throughput performance of both the systems for a THz communication environment with the carrier frequency of 300GHz and the tapped delay line (TDL) channel models described in 3GPP. It is observed from the simulation results that the OFDM systems outperform the MMSE-LE for various configurations.

Performance Evaluation of Space Time Frequency OFDM System using Super-Orthogonal Space Time Trellis Code Transmission Matrix (Super-Orthogonal STTC 전송 행렬을 이용한 STF-OFDM 시스템의 성능 평가)

  • Seo, Myoung-Seok;Shin, Chul-Min;Kim, Yoo-Mi;Kwak, Kyung-Sub
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.3 s.11
    • /
    • pp.29-39
    • /
    • 2006
  • In this paper, we propose an efficient method to detect the signal and evaluate performance of the system in frequency selective fading channel. We combine proposed system with OFDM (Orthogonal Frequency Division Multiplexing) to improve performance of the system. First, we study the SOSTTC-OFDM system using two transmit antenna and one receive antenna, and compare performance of the proposed space-time coded OFDM with that of previous system. We expand this system to the system using four transmit antennas with the proposed decoding method. Simulation results show that the proposed decoding method can detect the signal efficiently, and we identify that the performance of the proposed system is shown with varying doppler frequency in frequency selective fading channel.

  • PDF

Channel Estimation scheme for IEEE 802.11a system based on MIMO-OFDM systems (IEEE 802.11a 기반의 MIMO-OFDM 시스템을 위한 채널 추정 기법)

  • 안치준;안재민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.640-650
    • /
    • 2004
  • Channel estimation schemes are proposed for Multiple Input-Multiple output Orthogonal Frequency Division Multiplexing(MIMO-OFDM) systems based on the physical layer specification of the IEEE 802.1 la. By combining the space-time block coding(STBC)/ space-frequency block coding(SFBC) techniques with the transform domain interpolation, the proposed algorithms achieve more accurate channel coefficients for the MIMO channels such that improve the BER performance. The performance improvements of the proposed algorithms are evaluated by simulations under the various multipath fading channel environments and various transmission rates.

English Performance of MIMO-OFDM Combing Bemaformer with Space-time Decoder in Multiuser Environments (다중 사용자 환경에서 빔 형성기와 결합된 Space-Time decoder을 가진 MIMO-OFDM 시스템의 성능)

  • Kim Chan-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.775-783
    • /
    • 2006
  • In this paper, the new technique combining beamforming with space-time coding is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). When MIMO-OFDM system is employing Nt(the number of transmitterantenna) beamfomers and one S-T decoder at Nr receiver antennas, Nt signals removed CCI are outputted at the beamformer and then diversity gain can be got through space-time decoding. As the proposed technique can reduce cochannel interference and get diversity gain in the multi-user environment, the performance of MIMO-OFDM system is very improved. BER performance improvement and convergence behavior of the proposed approach are investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.