• Title/Summary/Keyword: orthogonal code hopping multiplexing (OCHM)

Search Result 4, Processing Time 0.011 seconds

Improved Orthogonal Code Hopping Multiplexing Using Both Division and Hopping

  • Kwon, Jae-Kyun;Park, Su-Won;Sung, Dan-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.277-285
    • /
    • 2008
  • We previously proposed an Orthogonal Code Hopping Multiplexing (OCHM) scheme for statistical multiplexing on a synchronous downlink. OCHM enables a large number of users to share a limited number of code channels through statistical multiplexing. We here improve the performance of OCHM by prioritizing encoded symbols according to their importance using both the conventional code division and the previously proposed code hopping multiplexing schemes. Prioritization is useful for channel coding schemes with different levels of importance for encoded symbols such as turbo-codes. Scheme performance is evaluated by simulation in terms of the required Eb/N0 for a 1% block error rate.

Collision Dispersion Based on Orthogonal Pre-Spreading in Orthogonal Code Hopping Multiplexing (OCHM 시스템에서 전확산에 의한 충돌 분산 기법)

  • Kwon, Jae-Kyun;Jung, Bang-Chul;Yun, Kyung-Su;Sung, Dan-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.679-684
    • /
    • 2009
  • A collision dispersion scheme based on orthogonal pre-spreading is proposed to reduce the effect of collisions that occur in orthogonal code hopping multiplexing(OCHM). The OCHM scheme was previously proposed to accommodate a significantly larger number of low-activity bursty channels than the number of orthogonal codewords. The proposed scheme greatly reduces the required SNR in channel decoding. In addition, the proposed scheme can be applied to OFHM based on OFDM.

Performance Analysis Based On Log-Likelihood Ratio in Orthogonal Code Hopping Multiplexing Systems Using Multiple Antennas (다중 안테나를 사용한 직교 부호 도약 다중화 시스템에서 로그 우도비 기반 성능 분석)

  • Jung, Bang-Chul;Sung, Kil-Young;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2534-2542
    • /
    • 2011
  • In this paper, we show that performance can be improved by using multiple antennas in the conventional orthogonal code hopping multiplexing (OCHM) scheme, which was proposed for accommodating a larger number of users with low channel activities than the number of orthogonal codewords used in code division multiple access (CDMA)-based communication systems through downlink statistical multiplexing. First, we introduce two different types of OCHM systems together with orthogonal codeword allocation strategies, and then derive their mathematical expression for log-likelihood ratio (LLR) values according to the two different schemes. Next, when a turbo encoder based on the LLR computation is used, we evaluate performance on the frame error rate (FER) for the aformentioned OCHM system. For comparison, we also show performance for the existing symbol mapping method using multiple antennas, which was used in 3GPP standards. As a result, it is shown that our OCHM system with multiple antennas based on the proposed orthogonal codeword allocation strategy leads to performance gain over the conventional system---energy required to satisfy a target FER is significantly reduced.

Collision Performance Improvement in Orthogonal Code Hopping Multiplexing Systems Using Multiple Antennas (다중 안테나를 이용한 직교 부호 도약 다중화 시스템의 성능향상)

  • Jung, Bang-Chul;Lee, Woo-Jae;Park, Yeoun-Sik;Jeon, Seong-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2100-2112
    • /
    • 2011
  • An orthogonal code hopping multiplexing (OCHM) technique has been proposed for accommodating a large number of users with low channel activities than the number of orthogonal codewords through statistical multiplexing in downlink cellular systems. In this paper, a multiple input multiple output (MIMO) antenna based OCHM system is proposed to improve the performance. Each modulated symbol is repeated N times and the N repeated symbols are transmitted simultaneously using N transmit antennas. Through repetitions, the effect of perforations that the OCHM system experiences is decentralized among the repeated symbols and the full perforation probability is significantly reduced. Each receiver detect the transmitted signal using its pre-assigned code hopping pattern. Simulation results show that the proposed scheme saves the required energy for a given frame error rate (FER).