• Title/Summary/Keyword: orthogonal code

Search Result 357, Processing Time 0.023 seconds

Outage Performance of Selective Dual-Hop MIMO Relaying with OSTBC and Transmit Antenna Selection in Rayleigh Fading Channels

  • Lee, In-Ho;Choi, Hyun-Ho;Lee, Howon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1071-1088
    • /
    • 2017
  • For dual-hop multiple-input multiple-output (MIMO) decode-and-forward relaying systems, we propose a selective relaying scheme that uses orthogonal space-time block code (OSTBC) and transmit antenna selection with maximal-ratio combining (TAS/MRC) or vice versa at the first and second hops, respectively. The aim is to achieve an asymptotically identical performance to the dual-hop relaying system with only TAS/MRC, while requiring lower feedback overhead. In particular, we give the selection criteria based on the antenna configurations and the average channel powers for the first and second hops, assuming Rayleigh fading channels. Also, the numerical results are shown for the outage performance comparison between the dual-hop DF relaying systems with the proposed scheme, only TAS/MRC, and only OSTBC.

Channel Estimation for Long Delay with Orthogonal Code in MIMO System (MIMO 환경에서 직교코드를 이용한 긴 채널추정)

  • Park, Do Hyun;Kang, Eun Su;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.470-471
    • /
    • 2011
  • 본 논문에서는 MIMO(multi-input multi-output) 시스템에서의 시간영역 채널 추정방법을 제안하였다. 제안된 알고리듬은 각 안테나에서 전송되는 시간영역의 OFDM(orthogonal frequency division multiplexing) 심볼 구간에 직교코드를 곱하여 기존의 채널 추정보다 긴 채널 추정이 가능하다. 제안된 알고리듬을 바탕으로 다양한 길이의 직교코드를 이용하여 채널추정이 가능함을 컴퓨터 시뮬레이션을 통해 검증하였다.

  • PDF

Polar Code Design for Nakagami-m Channel

  • Guo, Rui;Wu, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3156-3167
    • /
    • 2020
  • One drawback of polar codes is that they are not universal, that is, to achieve optimal performance, different polar codes are required for different kinds of channel. This paper proposes a polar code construction scheme for Nakagami-m fading channel. The scheme fully considers the characteristics of Nakagami-m fading channel, and uses the optimized Bhattacharyya parameter bounds. The constructed code is applied to an orthogonal frequency division multiplexing (OFDM) system over Nakagami-m fading channel to prove the performance of polar code. Simulation result shows the proposed codes can get excellent bit error rate (BER) performance with successive cancellation list (SCL) decoding. For example, the designed polar code with cyclic redundancy check (CRC) aided SCL (L = 8) decoding achieves 1.1dB of gain over LDPC at average BER about 10-5 under 4-quadrature amplitude modulation (4QAM) while the code length is 1024, rate is 0.5.

A Novel Hitting Frequency Point Collision Avoidance Method for Wireless Dual-Channel Networks

  • Quan, Hou-De;Du, Chuan-Bao;Cui, Pei-Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.941-955
    • /
    • 2015
  • In dual-channel networks (DCNs), all frequency hopping (FH) sequences used for data channels are chosen from the original FH sequence used for the control channel by shifting different initial phases. As the number of data channels increases, the hitting frequency point problem becomes considerably serious because DCNs is non-orthogonal synchronization network and FH sequences are non-orthogonal. The increasing severity of the hitting frequency point problem consequently reduces the resource utilization efficiency. To solve this problem, we propose a novel hitting frequency point collision avoidance method, which consists of a sequence-selection strategy called sliding correlation (SC) and a collision avoidance strategy called keeping silent on hitting frequency point (KSHF). SC is used to find the optimal phase-shifted FH sequence with the minimum number of hitting frequency points for a new data channel. The hitting frequency points and their locations in this optimal sequence are also derived for KSHF according to SC strategy. In KSHF, the transceivers transmit or receive symbol information not on the hitting frequency point, but on the next frequency point during the next FH period. Analytical and simulation results demonstrate that unlike the traditional method, the proposed method can effectively reduce the number of hitting frequency points and improve the efficiency of the code resource utilization.

A study on Multi-code Spread Spectrum System and its adaptation using MHCOC (MHCOC를 사용한 다중 부호 대역 확산 시스템과 적응성에 관한 연구)

  • Kong Hyung-Yun;Nam Doo-Hee
    • The KIPS Transactions:PartC
    • /
    • v.12C no.6 s.102
    • /
    • pp.901-906
    • /
    • 2005
  • In this paper, we propose a novel MHCOC (Mapped High Capacity Orthogonal Code) SS(Spread Spectrum) technique that reduces high PAPR (Peak power to Average Power Ratio) of HCOC SS system which was proposed to support high data rate transmission, and we compare to the conventional modulation technique such as MQAM SS that can transmit the same number of symbols at the same time. Moreover, we study on adaptation of this system to satisfy QoS (Quality of Service) that services the proper data rate according to the propagation channel quality information. We perform computer simulation to verify the performance of the proposed system and analyze its availability.

Forward Link Performance of CDMA/FDM Systems with Truncated Adaptive Transmission (차단 적응 전송 기법을 쓴 부호분할 다중접속/주파수분할 방식의 내림 연결 성능)

  • Kim, Hong-Jik;Oh, Jong-Ho;Yoon, Seok-Ho;Lee, Ju-Mi;Song, Ick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.666-674
    • /
    • 2005
  • A hybrid multicarrier CDMA/FDM system with a truncated adaptive transmission scheme is analyzed in forward link based on the feedback information from the mobile station. In the single cell environment, the prop(mea scheme outperforms the adaptive FH/DS system as well as the MC DS/CDMA system when orthogonal signature sequences are used. In the multiple cell environment also, the proposed scheme has better performance characteristics than the adaptive FH/DS system when orthogonal and random codes are used as spreading sequences.

CDMA Digital Mobile Communications and Message Security

  • Rhee, Man-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.4
    • /
    • pp.3-38
    • /
    • 1996
  • The mobile station shall convolutionally encode the data transmitted on the reverse traffic channel and the access channel prior to interleaving. Code symbols output from the convolutional encoder are repeated before being interleaved except the 9600 bps data rate. All the symbols are then interleaved, 64-ary orthogonal modulation, direct-sequence spreading, quadrature spreading, baseband filtering and QPSK transmission. The sync, paging, and forward traffic channel except the pilot channel in the forward CDMA channel are convolutionally encoded, block interleaved, spread with Walsh function at a fixed chip rate of 1.2288 Mcps to provide orthogonal channelization among all code channels. Following the spreading operation, the I and Q impulses are applied to respective baseband filters. After that, these impulses shall be transmitted by QPSK. Authentication in the CDMA system is the process for confirming the identity of the mobile station by exchanging information between a mobile station and the base station. The authentication scheme is to generate a 18-bit hash code from the 152-bit message length appended with 24-bit or 40-bit padding. Several techniques are proposed for the authentication data computation in this paper. To protect sensitive subscriber information, it shall be required enciphering ceratin fields of selected traffic channel signaling messages. The message encryption can be accomplished in two ways, i.e., external encryption and internal encryption.

Performance Analysis for The Coordinate Interleaved Orthogonal Design of Space Time Block Code in The Time Selective Fading Channel (시간 선택적 페이딩 환경에서 CIOD 시공간 블록 부호의 성능 분석)

  • Moon, Seung-Hyun;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.43-49
    • /
    • 2014
  • In this paper, we consider the performance evaluation of space time block code (STBC)) with coordinate interleaved orthogonal design (CIOD) over time selective channel. In case of quasi static channel, STBC-CIOD satisfies full rate and full diversity (FRFD) property with the single symbol decoding. However in the time selective channel, the symbol interference degrades the system performance when we employ the single symbol decoding. We derive the union bound of the symbol error probability by evaluating the pairwise error probability in the first order Markov channel. We also present simulation results of STBC-CIOD with QPSK.

A Closed Loop Orthogonal Space-Time Block Code for Maximal Channel Gains (최대의 채널 이득을 위한 폐루프 직교 시공간 블록 부호)

  • Lee, Ki-Ho;Kim, San-Hae;Shin, Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.13-19
    • /
    • 2008
  • In this paper, we propose a new CL-OSTBC (Closed Loop Orthogonal Space-Time Block Code) scheme for four transmit antennas and compare the scheme with existing closed loop schemes on the performance of BER (Bit Error Rate). In the proposed scheme, a transmitter receives channel feedback information and combines modulated symbols by the symbol combiner, and transmits the symbols encoded by the space-time block encoder. As a result, the proposed scheme achieves full-rate and maximal channel gains by more efficient utilization of the channel feedback information. Moreover, the scheme can reduce computation complexity by using a linear detector. Simulation results on the BER performance show that the proposed CL-OSTBC scheme outperforms existing CL-OSTBC schemes.