• 제목/요약/키워드: orthodontic mini-implant (OMI)

검색결과 12건 처리시간 0.024초

Three-dimensional finite element analysis of the deformation of the human mandible: a preliminary study from the perspective of orthodontic mini-implant stability

  • Baek, Sun-Hye;Cha, Hyun-Suk;Cha, Jung-Yul;Moon, Yoon-Shik;Sung, Sang-Jin
    • 대한치과교정학회지
    • /
    • 제42권4호
    • /
    • pp.159-168
    • /
    • 2012
  • Objective: The aims of this study were to investigate mandibular deformation under clenching and to estimate its effect on the stability of orthodontic mini-implants (OMI). Methods: Three finite element models were constructed using computed tomography (CT) images of 3 adults with different mandibular plane angles (A, low; B, average; and C, high). An OMI was placed between #45 and #46 in each model. Mandibular deformation under premolar and molar clenching was simulated. Comparisons were made between peri-orthodontic mini-implant compressive strain (POMI-CSTN) under clenching and orthodontic traction forces (150 g and 200 g). Results: Three models with different mandibular plane angles demonstrated different functional deformation characteristics. The compressive strains around the OMI were distributed mesiodistally rather than occlusogingivally. In model A, the maximum POMI-CSTN under clenching was observed at the mesial aspect of #46 (1,401.75 microstrain [${\mu}E$]), and similar maximum POMI-CSTN was observed under a traction force of 150 g (1,415 ${\mu}E$). Conclusions: The maximum POMI-CSTN developed by clenching failed to exceed the normally allowed compressive cortical bone strains; however, additional orthodontic traction force to the OMI may increase POMI-CSTN to compromise OMI stability.

Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position

  • Song, Jae-Won;Lim, Joong-Ki;Lee, Kee-Joon;Sung, Sang-Jin;Chun, Youn-Sic;Mo, Sung-Seo
    • 대한치과교정학회지
    • /
    • 제46권4호
    • /
    • pp.242-252
    • /
    • 2016
  • Objective: Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods: Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results: In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions: This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion.

교정용 미니임플란트의 식립각도에 따른 간접골성 고정원의 효과에 대한 유한요소 해석 (Effects of the Angulation of Orthodontic Mini-Implant as an Indirect Anchorage : A Three-Dimensional Finite Element Analysis)

  • 김민지;박영진;박선형;전윤식
    • 구강회복응용과학지
    • /
    • 제27권3호
    • /
    • pp.293-304
    • /
    • 2011
  • 구치부 가위교합을 개선하기 위한 여러 방법 중, 교정용 미니임플란트(OMI)와 조합된 Dragon helix를 이용한 방법이 이전에 소개된 바 있으며 이는 간접 골성고정원의 역할이 중요하다. 이에 본 연구에서는 간접골성고정원으로 사용된 OMI의 식립각도에 따라 나타나는 구치부의 치근에 나타나는 응력분포와 OMI의 표면에서의 응력 분포 및 변위를 유한요소 해석으로 비교하고자 하였다. 상악 제1대구치와 상악 제2소구치의 치근 사이에 OMI의 식립 각도를 골 표면에 대하여, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$으로 변화시키면서 최대응력분포와 변위를 관찰하였다. OMI의 식립 각도가 $90^{\circ}$일 때 상악 제1대구치와 상악 제2대구치의 구개 치근첨에 최대응력분포가 나타났고, 상악 제1대구치에서는 협측으로 변위의 양이 가장 적게 나타났으며, 상악 제2대구치에서는 함입 및 구개측으로의 변위량이 가장 크게 나타났다. OMI에서는 식립각도가 감소됨에 따라 최대 응력분포가 나사첨 부분으로 이동되었으며, 그에 따라 OMI의 변위량은 증가하였다. 이상의 결과로 OMI의 식립각도가 $90^{\circ}$일 때 고정원의 역할이 최대가 되었으며, 구치부 가위교합의 개선 효과가 가장 크게 나타남을 알 수 있었다.

Conventional Anchorage Reinforcement vs. Orthodontic Mini-implant: Comparison of Posterior Anchorage Loss During the En Masse Retraction of the Upper Anterior Teeth

  • Baek, Seung-Hak;Kim, Young-Ho
    • Journal of Korean Dental Science
    • /
    • 제3권1호
    • /
    • pp.5-10
    • /
    • 2010
  • This study sought to compare the amounts of posterior anchorage loss during the en masse retraction of the upper anterior teeth between orthodontic mini-implant (OMI) and conventional anchorage reinforcement (CAR) such as headgear and/or transpalatal arch. The subjects were 52 adult female patients treated with sliding mechanics (MBT brackets, .022" slot, .019X.025" stainless steel wire, 3M-Unitek, Monrovia, CA, USA). They were allocated into Group 1 (N=24, Class I malocclusion (CI), upper and lower first premolar (UP1LP1) extraction, and CAR), Group 2 (N=15, Cl, UP1LP1 extraction and OMI), and Group 3 (N=13, Class II division 1 malocclusion, upper first and lower second premolar extraction, and OMI). Lateral cephalograms were taken before (T0) and after treatment (T1). A total of 11 anchorage variables were measured. Analysis of variance was used for statistical analysis. There was no significant difference in treatment duration and anchorage variables at T0 among the three groups. Groups 2 and 3 showed significantly larger retraction of the upper incisor edge (U1E-sag, 9.3mm:7.3mm, P<.05) and less posterior anchorage loss (U6M-sag, 0.7~0.9mm:2mm, P<.05; U6A-sag, 0.5mm:2mm, P<.01) than Group 1. The ratio of retraction amount of the upper incisor edge per 1 of anchorage loss in the upper molar made for the significant difference between Groups 1 and 2 (4.6mm:7.0mm, P<.05). Group 3 showed a relatively distal inclination of the upper molar (P<.05) and the intrusion of the upper incisor and first molar (U1E-ver, P<.05; U6F-ver, P<.05) compared to Groups 1 and 2. Although OMI could not shorten the treatment duration, it could provide better maximum posterior anchorage than CAR.

  • PDF

교정용 미니임플랜트 식립 위치에 따른 dragon helix의 효과에 대한 유한요소해석 (Effects of orthodontic mini-implant position in the dragon helix appliance on tooth displacement and stress distribution: a three-dimensional finite element analysis)

  • 김민지;박선형;김현성;모성서;성상진;장강원;전윤식
    • 대한치과교정학회지
    • /
    • 제41권3호
    • /
    • pp.191-199
    • /
    • 2011
  • Objective: The purpose of this study was to investigate the stress distribution on the orthodontic mini-implant (OMI) surface and periodontal ligament of the maxillary first and second molars as well as the tooth displacement according to the OMI position in the dragon helix appliance during scissors-bite correction. Methods: OMIs were placed at two maxillary positions, between the first and the second premolars (group 1) and between the second premolar and the first molar (group 2). The stress distribution area (SDA) was analyzed by three-dimensional finite element analysis. Results: The maximal SDA of the OMI did not differ between the groups. It was located at the cervical area and palatal root apex of the maxillary first molar in groups 1 and 2, respectively, indicating less tipping in group 2. The minimal SDA was located at the root and furcation area of the maxillary second molar in groups 1 and 2, respectively, indicating greater palatal crown displacement in group 2. Conclusions: Placement of the OMI between the maxillary second premolar and the maxillary first molar to serve as an indirect anchor in the dragon helix appliance minimizes anchorage loss while maximizing the effect on scissors-bite correction.

Effect of bite force on orthodontic mini-implants in the molar region: Finite element analysis

  • Lee, Hyeon-Jung;Lee, Kyung-Sook;Kim, Min-Ji;Chun, Youn-Sic
    • 대한치과교정학회지
    • /
    • 제43권5호
    • /
    • pp.218-224
    • /
    • 2013
  • Objective: To examine the effect of bite force on the displacement and stress distribution of orthodontic mini-implants (OMIs) in the molar region according to placement site, insertion angle, and loading direction. Methods: Five finite element models were created using micro-computed tomography (microCT) images of the maxilla and mandible. OMIs were placed at one maxillary and two mandibular positions: between the maxillary second premolar and first molar, between the mandibular second premolar and first molar, and between the mandibular first and second molars. The OMIs were inserted at angles of $45^{\circ}$ and $90^{\circ}$ to the buccal surface of the cortical bone. A bite force of 25 kg was applied to the 10 occlusal contact points of the second premolar, first molar, and second molar. The loading directions were $0^{\circ}$, $5^{\circ}$, and $10^{\circ}$ to the long axis of the tooth. Results: With regard to placement site, the displacement and stress were greatest for the OMI placed between the mandibular first molar and second molar, and smallest for the OMI placed between the maxillary second premolar and first molar. In the mandibular molar region, the angled OMI showed slightly less displacement than the OMI placed at $90^{\circ}$. The maximum Von Mises stress increased with the inclination of the loading direction. Conclusions: These results suggest that placement of OMIs between the second premolar and first molar at $45^{\circ}$ to the cortical bone reduces the effect of bite force on OMIs.

Three-dimensional evaluation of tooth movement in Class II malocclusions treated without extraction by orthodontic mini-implant anchorage

  • Ali, Dler;Mohammed, Hnd;Koo, Seung-Hwan;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • 대한치과교정학회지
    • /
    • 제46권5호
    • /
    • pp.280-289
    • /
    • 2016
  • Objective: The aim of this study was to analyze tooth movement and arch width changes in maxillary dentition following nonextraction treatment with orthodontic mini-implant (OMI) anchorage in Class II division 1 malocclusions. Methods: Seventeen adult patients diagnosed with Angle's Class II division 1 malocclusion were treated by nonextraction with OMIs as anchorage for distalization of whole maxillary dentition. Three-dimensional virtual maxillary models were superimposed with the best-fit method at the pretreatment and post-treatment stages. Linear, angular, and arch width variables were measured using Rapidform 2006 software, and analyzed by the paired t -test. Results: All maxillary teeth showed statistically significant movement posteriorly (p < 0.05). There were no significant changes in the vertical position of the maxillary teeth, except that the second molars were extruded (0.86 mm, p < 0.01). The maxillary first and second molars were rotated distal-in ($4.5^{\circ}$, p < 0.001; $3.0^{\circ}$, p < 0.05, respectively). The intersecond molar width increased slightly (0.1 mm, p > 0.05) and the intercanine, interfirst premolar, intersecond premolar, and interfirst molar widths increased significantly (2.2 mm, p < 0.01; 2.2 mm, p < 0.05; 1.9 mm, p < 0.01; 2.0 mm, p < 0.01; respectively). Conclusions: Nonextraction treatment with OMI anchorage for Class II division 1 malocclusions could retract the whole maxillary dentition to achieve a Class I canine and molar relationship without a change in the vertical position of the teeth; however, the second molars were significantly extruded. Simultaneously, the maxillary arch was shown to be expanded with distal-in rotation of the molars.

다양한 길이의 two-component 미니 임플란트의 응력분산에 대한 3차원적 유한요소분석 (Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length)

  • 최봄;이동옥;모성서;김성훈;박기호;정규림;;한성호
    • 대한치과교정학회지
    • /
    • 제41권6호
    • /
    • pp.423-430
    • /
    • 2011
  • Objective: To evaluate the extent and aspect of stress to the cortical bone after application of a lateral force to a two-component orthodontic mini-implant (OMI, mini-implant) by using three-dimensional finite element analysis (FEA). Methods: The 3D-finite element models consisted of the maxilla, maxillary first molars, second premolars, and OMIs. The screw part of the OMI had a diameter of 1.8 mm and length of 8.5 mm and was placed between the roots of the upper second premolar and the first molar. The cortical bone thickness was set to 1 mm. The head part of the OMI was available in 3 sizes: 1 mm, 2 mm, and 3 mm. After a 2 N lateral force was applied to the center of the head part, the stress distribution and magnitude were analyzed using FEA. Results: When the head part of the OMI was friction fitted (tapped into place) into the inserted screw part, the stress was uniformly distributed over the surface where the head part was inserted. The extent of the minimum principal stress suggested that the length of the head part was proportionate with the amount of stress to the cortical bone; the stress varied between 10.84 and 15.33 MPa. Conclusions: These results suggest that the stress level at the cortical bone around the OMI does not have a detrimental influence on physiologic bone remodeling.

심한 총생 : 비발치로 가능한가? (Severe crowding : Is nonextraction treatment possible?)

  • 정민호
    • 대한치과의사협회지
    • /
    • 제57권6호
    • /
    • pp.326-332
    • /
    • 2019
  • Extraction treatment has been used for a long time to treat crowding or lip protrusion patients and still extraction decision is the most difficult and important decision during diagnosis and treatment planning. If the amount of crowidng is severe, premolar extraction is often considered. Because of their location, premolar extractions would seem to allow for the most straightforward relief of crowding and the improvement of soft tissue profile. But patients and their parents often prefer nonextraction approach if possible and such a preference gives us serious question about the boundary of nonextraction treatment. Because Orthodontic Mini-Implant (OMI) become popular these days, distalization of posterior teeth can be obtained easily without patient's compliance. For this reason, many orthodontists are trying to treat crowding patient with nonextraction than before. But sometime, unexpected side effects are observed including unesthetic profile, impaction of second molar and long treatment time. All the tools for space gaining - extraction, arch expansion, molar distalization and interproximal enamel reduction - have their limitations and indications. Possible side effects and limitations should be carefully considered during the treatment planning. Although Korean patients usually require extraction more often than US or European patients, more knowledge about the tools for space gaining would help us to decrease the rate of extraction and the problems during treatment of crowding patients.

  • PDF

성인 환자에서 구치부 압하를 통한 개방교합의 치료와 유지 (Non-surgical treatment and retention of open bite in adult patients with orthodontic mini-implants)

  • 문철현;이주신;이현선;최진휴
    • 대한치과교정학회지
    • /
    • 제39권6호
    • /
    • pp.402-419
    • /
    • 2009
  • 성장이 종료된 치성 또는 골격성 개방교합 환자를 치료하는 것은 매우 어려운 일이다. 전치부 개방교합 환자는 증가된 전안면고경, 상악 구치부의 과도한 수직성장, 큰 하악각 등의 특징을 지닌다. 이러한 증례에서 구치의 압하를 통한 개방교합의 해소는 좋은 치료전략이다. 본 연구는 교정용 미니임플란트를 이용하여 개방교합을 치료하고 성공적인 유지를 얻은 두 명의 환자에 대한 보고이다. 적절한 진단이 시행되고 교정용 미니임플란트 등의 장치를 이용한 치료기법을 적용하면 수술치료 없이 교정치료만으로 개방교합의 치료가 가능하며, 하악구치부에 posterior bite block을 추가한 가철식 유지장치 및 SFR이 개교환자를 위한 유지장치 또는 보조유지장치로 유용하게 사용될 수 있다는 결론을 얻었다.