• Title/Summary/Keyword: orography

Search Result 20, Processing Time 0.024 seconds

A Numerical Simulation Study of Orographic Effects for a Heavy Rainfall Event over Korea Using the WRF Model (WRF 모형을 이용한 한반도 집중 호우에 대한 지형 효과의 수치 모의 연구)

  • Lee, Ji-Woo;Hong, Song-You
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.319-332
    • /
    • 2006
  • This study examines the capability of the WRF (Weather Research and Forecasting) model in reproducing heavy rainfall that developed over the Korean peninsula on 26-27 June 2005. The model is configured with a triple nesting with the highest horizontal resolution at a 3-km grid, centered at Yang-dong, Gyeonggi-province, which recorded the rainfall amount of 376 mm. In addition to the control experiment employing realistic orography over Korea, two consequent sensitivity experiments with 1) no orography, and 2) no land over Korea were designed to investigate orographic effects on the development of heavy rainfall. The model was integrated for 48 hr, starting at 1200 UTC 25 June 2005. The overall features of the large-scale patterns including a cyclone associated with the heavy rainfall are reasonably reproduced by the control run. The spatial distribution of the simulated rainfall over Korea agreed fairly well with the observed. The amount of predicted maximum rainfall at the 3-km grid is 377 mm, which located about 50 km southeast from the observed point, Yang-Dong, indicating that the WRF model is capable of predicting heavy rainfall over Korea at the cloud resolving resolutions. Further, it was found that the complex orography over the Korean peninsula plays a role in enhancing the rainfall intensity by about 10%. The land-sea contrast over the peninsula was fund to be responsible for additional 10% increase of rainfall amount.

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

Meteorological basis for wind loads calculation in Croatia

  • Bajic, Alica;Peros, Bernardin
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.389-406
    • /
    • 2005
  • The results of reference wind speed calculation in Croatia as a base for the revision of the Croatian standards for wind loads upon structures are presented. Wind speed averaged over 10 minutes, at 10 m height, in a flat, open terrain, with a 50-year mean return period is given for 27 meteorological stations in Croatia. It is shown that the greatest part of Croatia is covered with expected reference wind speeds up to 25 m/s. Exceptions are stations with specific anemometer location open to the bura wind which is accelerated due to the channelling effects of local orography and the nearby mountain passes where the expected reference wind speed ranges between 38 m/s and 55 m/s. The methodology for unifying all available information from wind measurements regardless of the averaging period is discussed by analysing wind speed variability at the meteorological station in Hvar.

Extreme wind prediction and zoning

  • Holmes, J.D.;Kasperski, M.;Miller, C.A.;Zuranski, J.A.;Choi, E.C.C.
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.269-281
    • /
    • 2005
  • The paper describes the work of the IAWE Working Group WGF - Extreme Wind Prediction and Zoning, one of the international codification working groups set up in 2000. The topics covered are: the international database of extreme winds, quality assurance and data quality, averaging times, return periods, probability distributions and fitting methods, mixed wind climates, directionality effects, the influence of orography, rare events and simulation methods, long-term climate change, and zoning and mapping. Recommendations are given to promote the future alignment of international codes and standards for wind loading.

A Numerical Case Study Examining the Orographic Effect of the Taebaek Mountains on Snowfall Distribution over the Yeongdong Area (태백산맥이 영동지역의 강설량 분포에 미치는 영향에 관한 수치 모의 사례 연구)

  • Lee, Jae Gyoo;Kim, Yu Jin
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.367-386
    • /
    • 2008
  • The Weather Research and Forecasting (WRF) model was designed to identify the role of the Taebaek Mountains in the occurrence of heavy snowfall in Yeongdong area with a strong northeast wind on January 20-21, 2008. To this end, in addition to the control simulation with the realistic distribution of the Taebaek Mountains, a sensitivity experiment that removed the orography over the Taebaek Mountains was performed. The control simulation results showed that the resulting wind field and precipitation distribution were similar to what were observed. Results from the sensitivity experiment clearly demonstrates the presence of orographic lifting on the windward slope of the mountains. It is concluded that the altitude of the Taebaek Mountains is the main controlling factor in determining the distribution and amount of precipitation in the Yeongdong area for the case of heavy snowfall in January 2008.

The simulation of the land and sea breeze over Pusan District (부산지방 해륙풍에 관한 Simulation)

  • Jang, Kwang-Mee;Moon, Sung-Euii;Jo, Byeong-Gil
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.9.1-16
    • /
    • 1993
  • Land-sea breeze over Pusan district is investigated by performing the numerical simplations with orography on a two-dimensional mesoscale model. The model results show that the sea breeze strengthens and begins to move inland at 1000LST. The strongest sea breeze is occurred at 1500LST and begins to weak at 1700 LST. After 2400LST a weaker land breeze compared with the sea breeze develops. The observed datas and the simulated land-sea breeze is not coinsidented exactly at the event day(1983. 9. 19.) . But simulated land-sea breeze is corresponded of synoptic characteris- tics that was studied previously.

  • PDF

The simulation of the land and sea breeze over Pusan District (부산지방 해륙풍에 관한 Simulation)

  • Jang, Kwang-Mee;Moon, Sung-Euii;Jo, Byeong-Gil
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.9-9
    • /
    • 1993
  • Land-sea breeze over Pusan district is investigated by performing the numerical simplations with orography on a two-dimensional mesoscale model. The model results show that the sea breeze strengthens and begins to move inland at 1000LST. The strongest sea breeze is occurred at 1500LST and begins to weak at 1700 LST. After 2400LST a weaker land breeze compared with the sea breeze develops. The observed datas and the simulated land-sea breeze is not coinsidented exactly at the event day(1983. 9. 19.) . But simulated land-sea breeze is corresponded of synoptic characteris- tics that was studied previously.

Rainfall Variations in the Nam River Dam Basin (남강댐 유역에 있어서 강우분포의 변화)

  • 박준일
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.91-106
    • /
    • 1995
  • An investigation into the rainfall variability in time and space in the Nam River dam basin of Korea was made with use of the coefficient of variation and the correlation coefficient. The Nam River dam basin is a small mountainous watershed where the wind direction and orography are the dominant influences on the pattern and distribution of rainfall. It was found that the characteristics of rainfall distribution vary with elevation, position, wind direction. And in the three directions considered, it was found that there is the related formulation dependent on the distance between two stations. The resultrs of this study on the temporal and spatial characteristics of rainfall can be used in the design of raingauge networks, hydrological forecasting, and so on in the Nam River dam basin.

  • PDF

A Study on the Roughness Length Spatial Distribution in Relation to the Seoul Building Morphology (서울시 건물형태에 따른 거칠기길이 분포특성 연구)

  • Yi, Chaeyeon;Kwon, Tae Heon;Park, Moon-Soo;Choi, Young Jean;An, Seung Man
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.339-351
    • /
    • 2015
  • The purpose of this study is for the fundamental understandings about building morphological parameters and aerodynamic roughness parameters of Seoul, Korea using the detailed urban geographic information datasets. Applied roughness parameter calculations are based on a digital map of buildings with lot area polygons. The quality of the developed roughness length ($z_0$) of Seoul was evaluated with densely installed 107 automatic weather stations. The correlation coefficient results between averaged wind speeds of AWS data and averaged $z_0$ is -0.303 in night and -0.398 in day (200 m radii circles case). Further $z_0$ enhancement should follow by considering other surface features such as high tree and orography of Seoul. However, this study would meet the needs to for local- or meso-scale meteorological modeling applications of Seoul. However, further studies would require for enhancing the $z_0$ applications of Seoul.