• Title/Summary/Keyword: origin of dissolved organic materials

Search Result 4, Processing Time 0.017 seconds

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau

  • Kim, Min Sung;Zhou, Lei;Choi, Mira;Zhang, Yunlin;Zhou, Yongqiang;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.192-199
    • /
    • 2021
  • Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.

Manganese in Seawaters of the Amundsen Sea, Antarctic (남극 아문젠해에서 해수 중 Mn의 분포 특성)

  • Jang, Dongjun;Choi, Mansik;Park, Jongkyu;Park, Kyungkyu;Hong, Jinsol;Lee, Sanghoon;Jung, Jinyoung
    • Ocean and Polar Research
    • /
    • v.41 no.2
    • /
    • pp.63-77
    • /
    • 2019
  • In order to investigate the behavior and seasonal variability of Mn as one of the bio-essential metals in the Amundsen sea, which is known as the most biologically productive coastal area around the Antartica, seawaters were collected using a clean sampling system for 10 stations (96 ea) in 2014 (ANA04B) and for 12 stations (139 ea) in 2016 (ANA06B) surveys of RV ARAON. Dissolved and particulate Mn concentration varied in the range of 0.15-4.43 nmol/kg and <0.01 to 2.42 nM in 2014 and in the range of 0.25-4.15 nmol/kg and 0.01-2.64 nM in 2016, respectively. From the sectional distribution of dissolved and particulate Mn, it might be suggested that dissolved/particulate Mn was provided from iceberg melting and diffusion/resuspension from sediments, respectively. Although this sea is highly productive, there was little evidence regarding the biological origin of dissolved Mn, but particulate Mn only in sea ice and offshore areas could be explained as originating from organic matters, e.g. phytoplanktons. And it could be suggested that the subsurface maximum of dissolved Mn was formed by isopycnal transport of melting materials from ice wall to offshore. Compared to early (2014) summer, temperature, salinity, biomass, dissolved and particulate Mn in late (2016) summer indicated that temporal variations might be resulted from the reduction of ice melting and mCDW flow, which induced a reduction in resuspension. In addition, in the late summer, particles including biomass were reduced, which brought about a reduction in the removal rate of dissolved Mn.

Reduction of the Offensive Odor from Confectionery Wastewater Plant (제과공장의 폐수처리장에서 발생하는 악취 저감)

  • 김영식;손병현;조상원;정종현
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.62-69
    • /
    • 1998
  • It has been studied that the measurement of odor component emission at confectionery manufacture. The objects of this study were to investigate reduction of offensive odor. The survey effects of odorous materials are presented as follows. The countermeasure of operating process is to minimize sludge sediment in each unit facility. Especially, in summer, we have to clean the sludge frequently, because anaerobic decomposing is likely to occur easily. The sludge or scum from sedimentation tank pond, and floating tank should be treated quickly. We should avoid overloading operation. In the case of overloading, dissolved oxygen should be increased, the quality of wastewater input should be decreased. When dried cakes from condense tank or floating tank are left in treatment plant, we should cover, to prevent diffusion of smell with masking materials. The seasonal condition of operating should be fixed and the kind of coagulants should be changed because the wastewater in each season have different loading rates and organic materials. Odorous materials are very sensitive to the seasonal temperature variation. Especially, when the amount of rainfall is small and the high temperature of maintenance in long periods, air diffusion rate is large, so odorous materials can make great effect on surroundings comparision with other periods. To reduce odorous gas, as short term method, we had better take ceramic addition method. Especially, in summer we should take ceramic addition method. Also, as long term method, the size of wastewater treatment facility is the most important in the normal operating of wastewater treatment facility. But wastewater treatment facilities in this factory are too old, treatment process is old fashion, and the size is too small. So, large wastewater quantity to treat in summer. As results, the expansion of wastewater treatment facility and the process of improvement are required. Restriction level of odor was exceed. As it is overloaded in summer, the basis cause of odor is that the size of wastewater treatment facility is small. The prediction of air quality equilibrium density variation show that the odorous materials from working place are Amine materials whose smell strength is about 2.5(a little strong degree). We can suppose that in summer is sensitive to temperature variation, smell strength is larger as to reduce the origin of odor. We must expand wastewater treatment facility and improve the process A.S.A.P.

  • PDF

Organic Matter Analysis and Physicochemical Properties of Leachate from a Foot-and-Mouth Disease Landfill Site (구제역 가축 매몰지 침출수의 물리 화학적특성과 유기물질 성상분석)

  • Kang, Mee-A;Kim, Mi-Sun;Choi, Byung-Woo;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.128-134
    • /
    • 2012
  • Foot and mouth disease (FMD) is one of the most notorious and contagious viral diseases afflicting cloven-hoofed animals. In this study, the physicochemical properties of leachate from a FMD landfill site at 773-1, Waryong, Andong, Korea and the ground water from 777, Waryong, Andong, Korea, were analyzed for 1 year from December $10^{th}$ 2010 to November $17^{th}$ 2011. The leachate was collected from the FMD landfill site during March, May, July, September and November, 2011 and changes in pH, brix, water content, insoluble solids, crude proteins, crude lipids, total and reducing sugars and ash content were determined. Considering the annual profiles of temperature and rainfall at the FMD landfill site, the dramatic changes in the physicochemical properties of the leachate from March to July, and especially from May to July, such as increases in pH, and a rapid reduction of brix and organic matter, may be closely linked to the growth of microorganisms in the leachate. The sharp decreases in the concentration of biominerals, such as Mg, Ca, and Fe from 1073, 4311 and 56.2 ppm in March to 151, 78, and 0.1 ppm in November, further suggest that decreases in organic matter in the leachate result from degradation by microorganisms originating from the intestines of the livestock. Analysis of the profiles of the organic materials in the leachate revealed that the properties of the leachate were similar to those of excremental matter-derived water. These results could be applied to a number of fields for the analysis of organic matter behavior, the development of the degradation process, and risk analysis in the environment for hygiene and food industries, of leachate from FMD landfill sites.