• Title/Summary/Keyword: orifice diameter

Search Result 281, Processing Time 0.023 seconds

The Cooling Characteristics for Circular Irradiation Hole under Suppressing Jet Flow at Guide Tube in HANARO (안내관 제트유동 억제시의 하나로 원형 조사공의 냉각특성)

  • Wu S. I.;Park P. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.208-213
    • /
    • 2004
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in- pool type, is under normal operation since it reached the initial critical in February 1995. The HANARO is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading it in a circular flow tube (OR-5). A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to calculate the hole size of a orifice inserted in the circular irradiation hole and to study the flow characteristics through the guide tube under reactor normal operation and loading the target. As results, the results show that the hole size of orifice was 31 mm of the inner diameter to suppress the guide tube jet flow and the coolant safely cooled the target of fission moly after inserting the orifice to the flow tube.

  • PDF

An Experimental Study of the Spray Characteristics for an Oxidizer-rich Preburner Injector (산화제 과잉 예연소기 인젝터의 분무 특성에 관한 연구)

  • So, Y.S.;Yang, J.H.;Han, Y.M.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • The spray characteristics of the oxidizer-rich preburner are investigated. This system is generally operated at an oxidizerfuel mixture ratio of 50. The spray quality and mixing performance are very important for safe combustion. To know the spray characteristics of the oxidizer-rich preburner, we have designed various swirl injectors and measured droplet velocity and size by the PDPA system. The flow discharge coefficient of the fuel orifice is $0.12{\sim}0.21$, oxidizer orifice discharge coefficient is $0.16{\sim}0.28$. From the spray visualization, fuel nozzle spray angle is $15^{\circ}{\sim}25^{\circ}$, oxidizer nozzle spray angle is $65^{\circ}{\sim}85^{\circ}$ and combined spray angle is reduced $2^{\circ}{\sim}5^{\circ}$ compared to the oxidizer nozzle only case. From the PDPA measurement, droplet SMD is $175\;{\mu}m$ at 50 mm and $190\;{\mu}m$ at 100 mm of variant 1 combined case. The number concentration measurement revealed the reason of the droplet diameter increasement with distance. That is due to drop coalescence results from collision of drops which is occurred in dense sprays at a long distance from nozzle orifice exit.

  • PDF

Numerical Study of Particle Motion and Particle Beam Formation Through a Critical Orifice (임계 오리피스를 통과한 입자의 운동특성과 입자 빔에 관한 수치적 연구)

  • Ahn, Jin-Hong;Ahn, Kang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1240-1247
    • /
    • 1999
  • Particle motion through a disk type critical orifice placed in a 3.0cm diameter chamber has been studied numerically. In the simulation, the velocity field is solved using Pantankar's SIMPLER algorithm for the compressible flow and convergence of the computation is confirmed if the mass source at each control volume is smaller than $10^{-7}$. The particle motion in the flow field is solved in Lagrangian method. The particle trajectories showed that the particles injected away from the center line are expanded rapidly. At lower pressures, this expansion phenomena are more dominant. At lower pressures, the clear difference in particle and air speed is showed all the way down to the exit plan. It was found that particles with Stokes number of ca.2.5 tend to focus close to the center line very well except the particles travelling near the wall. However, particles with Stokes number greater than ca.2.5 show a tendency to cross the center line.

Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR (Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구)

  • Park, Hyung Sun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.

A Study on the Characteristics of Liquid Jet in Crossflows Using Elliptical Nozzles (타원형 노즐을 이용한 횡단류 유동에서 액체제트 특성 연구)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.320-324
    • /
    • 2017
  • Effect of elliptical orifice on the spray characteristics of liquid jet ejecting into subsonic crossflows were experimentally studied. Circular/elliptical plain-orifice injectors, which had different ratios of the orifice length to diameter and major axis to minor axis, were used for transverse injection. Compared with the previous research, breakup lengths of elliptical nozzles are shorter than circular nozzles at all experimental condition. Cavitation/hydraulic flip are considered as a reduction in the breakup length at all circular/elliptical nozzle. In the case of liquid column trajectories, major axis which was placed to the crossflows, increases the frontal area of the liquid column exposed to the crossflows. Hence, the aerodynamic force exerted on the jet is increased and the penetration depth is reduced.

  • PDF

Characteristics of Droplet Properties in the Two-Phase Spray into a Subsonic Cross Flow

  • Lee, I.C.;Cho, W.J.;Koo, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.358-363
    • /
    • 2008
  • The spray cross-section characteristics of two-phase spray that using external-mixing nozzle injected into a subsonic cross flow were experimentally studied with various ALR ratio that is $0{\sim}59.4%$. Suction type wind tunnel was used and experiments were conducted to ambient environment. Several plain orifice nozzles with L/d of 30 and orifice diameter of 0.5 mm and orifice length 1.5 mm were tested. Free stream velocity profiles at the injection location were measured using hot wire. Spray images were captured to study collision point and column trajectory. Phase Doppler particle analyzer(PDPA) was utilized to quantitatively measuring droplet SMD, volume flux. Measuring probe of PDPA positions was moved 3-way transverse machine. SMD distributions were layered structure and peaked at the top of the spray plume and low value at bottom of the spray. Volume flux of spray was distributed to the two side region and volume flux quantity decreased when ALR ratio increased. It was found that the perpendicularly injected two-phase spray jet of external mixing into a cross flow showing that mistlike spray moved away from the test section bottom region.

  • PDF

Spray Characteristics of Air-assisted Vortex Nozzle at Low Pressure Condition (공기보조식 와류 노즐의 저압 분무특성)

  • Kim, Woojin;Subedi, Bimal;Choi, Jang-Soo
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.82-87
    • /
    • 2015
  • A nozzle with vortex generator was used to develop the low pressure nozzle with high atomization performance and the nozzle atomized the liquid by centrifugal shear forces. In order to analyze the atomization characteristics, a shadowgraphy method was used and the measurement of droplet size was performed by using laser diffraction analyzer. The liquid injection pressure was fixed as 0.03 bar which is very low pressure and the gas injection pressures were changed from 0 bar to 2.0 bar. As a result, the breakup was achieved at the air injection pressure of 0.25 bar and over. The nozzle with the orifice diameter of 0.4 mm and the orifice gap of 0.25 mm presented small droplet diameters under 50 at the air injection pressure of 0.75 bar.

Cooling performance test of neon refrigeration system using commercial helium compressor (상용 헬륨압축기를 이용한 네온 냉각 시스템의 냉각특성 실험)

  • Ko, Jun-Seok;Kim, Hyo-Bong;Yeom, Han-Kil;Hong, Yong-Ju;Park, Seong-Je;Lee, Kong-Hoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.36-41
    • /
    • 2011
  • This paper describes experimental investigation on neon refrigeration system using commercial helium compressor. In this paper, neon refrigeration cycle is calculated with assumption of ideal heat exchanger. From analysis, 32.6 K of the lowest temperature and 0.945 of quality after expansion are predicted. Cryogenic heat exchangers for pre cooler and main heat exchanger are designed and fabricated with configuration of tube-in-tube heat exchanger. In experiments, cooling performance test are performed as variation of charging pressure and orifice hole diameter. From experimental results, the lowest temperature of 44.0 K was measured with 500 ${\mu}m$ orifice and 1500 kPa of charging pressure.

A Study on Characteristics of Flow Control Servo Valve with no Drain Orifice (드레인 오리피스가 없는 유랑제어 서보밸브의 특성에 관한 연구)

  • Yun, So-Nam;Gang, Bo-Sik;Seong, Baek-Ju;Kim, Hyeong-Ui
    • 연구논문집
    • /
    • s.26
    • /
    • pp.85-94
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with high response characteristics, and to verify the validity of the design factors. In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

Dynamic Response Characteristics Evaluation of Hydrostatic Bearing in Hydraulic Piston Pump/Motor (유압 피스톤 펌프/모터의 정압베어링 응답특성 평가)

  • Ham, Young-Bog;Yun, So-Nam;Kim, Dong-Soo;Choi, Byoung-Oh;Kim, Sung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.116-120
    • /
    • 2001
  • In swash plate type axial piston hydraulic pump and motor, the piston shoe is periodically pressurized with square function shape by supply pressure load as rotation of cylinder barrel. Therefore the recess pressure on bottom part of piston shoe is suddenly increase through orifice in the piston shoe. In this study, we simulated that the frequency response of the recess pressure against with change of supply pressure with analysis tool. Also, we evaluate the dynamic response characteristics of overbalanced hydrostatic bearing with change of the orifice diameter.

  • PDF