• Title/Summary/Keyword: organotypic hippocampal slice culture

Search Result 19, Processing Time 0.032 seconds

Vitamin E protects neurons against kainic acid-induced neurotoxicity in organotypic hippocampal slice culture (뇌 해마 절편 배양 모델에서 흥분 독성에 대한 비타민 E의 신경 보호 효과)

  • Kim, Ga-Min;Jung, Na-Young;Lee, Kyung-Hee;Kim, Hyung-A;Kim, Un-Jeng;Lee, Bae-Hwan
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.190-192
    • /
    • 2009
  • Kainic acid (KA), an agonist for kainate and AMPA receptors, is an excitatory neurotoxic substance. Vitamin E such as alpha-tocopherol and alpha-tocotrienol is a chain-breaking antioxidant, preventing the chain propagation step during lipid peroxidation. In the present study, we have investigated the neuroprotective effects of alphatocopherol and alpha-tocotrienol on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC). After 15h KA treatment, delayed neuronal death was detected in CA3 region. Alpha-tocopherol and alpha-tocotrienol increased cell survival and reduced the number of TUNEL-positive cells in CA3 region. These data suggest that alpha-tocopherol and alpha-tocotrienol treatment have protective effects on KA-induced cell death

  • PDF

Neuroprotective effects of vitamin C (비타민 C의 신경 보호 효과)

  • Sim, In-Seop;Lee, Kyeong-Hui;Kim, Eun-Jin;Cha, Myeong-Hun;Kim, Eun-Jeong;Kim, Ga-Min;Kim, Hyeong-A;Lee, Bae-Hwan
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.147-150
    • /
    • 2008
  • Vitamin C ascorbic acid (AA) and dehydroascorbic acid (DHA) as an antioxidant have been shown to have protective effects in experimental neurological disorder models such as stroke, ischemia, and epileptic seizures. The present study was conducted to examine the protective effect of AA and DHA on Kainic acid (KA) neurotoxicity using organotypic hippocampal slice cultures (OHSC). After 12h KA treatment, significant delayed neuronal death was detected in CA3 region, but not in CA1. Intermediate dose of AA and DHA pretreatment significantly prevented cell death and inhibit ROS level, mitochondrial dysfunction and capase-3 activation in CA3 region. In the case of low or high dose, however, AA or DHA pretreatment were not effective. These data suggest that both AA and DHA pretreatment have neuroprotective effects on KA-induced neuronal injury depending on the concentration, by means of inhibition of ROS generation, mitochondrial dysfunction, and caspase-dependent apoptotic pathway.

  • PDF

Neuroprotective Effects of Medicinal Herbs in Organotypic Hippocampal Slice Cultures (뇌해마의 장기양 조직배양을 이용한 한약물의 뇌신경세포손상 보호효능 연구)

  • Jung, Hyuk-Sang;Sohn, Nak-Won;Lee, Won-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2004
  • Objectives : For the screening of neuroprotective effects of medicinal herbs, the complex system of animal models suffer some disadvantages in controlling critical parameters such as blood pressure and body temperature. Additionally, application of drugs to the appropriate brain area sometimes is difficult, due to poor permeability though the blood brain barrier, and so potential protective effects might be masked. Methods : Organotypic hippocampal slice culture (OHSC) method has the advantages of being relatively easy to prepare and of maintaining the general structure, including tissue integrity and the connections between cells. Drugs can easily be applied and neuronal damage can easily be quantified by using tissues and culture media. This study demonstrates neuroprotective effects of Puerariae radix (葛根, PR), Salviae miltiorrhizae radix (丹蔘, SR), Rhei rhizoma (大黃, RR), and Bupleuri radix (柴胡, BR). These were screenedand compared to MK-801, antagonist of NMDA receptors, by using OHSC of 1 week-old Sprague-Dawley rats. Oxygen/glucose deprivation (OGD) were conducted in an anaerobic chamber $(85%\;N_2,\;10%\;CO_2\;and\;5%\;H_2)$ in a deoxygenated glucose-free medium for 60 minutes. Water extracts of each herbs were treated to culture media with $5\;{\mu}g/ml$ for 48 hours. Results : Neuronal cell death in the cultures was monitored by densitometric measurements of the cellular uptake of propidium iodide (PI). PI fluorescence images were obtained at 48 hours after the OGD and medicinal herb treatment. Also TUNEL-positive cells in the CAI and DG regions and LDH concentrations in culture media were measured at 48 hours after the OGD. According to measured data, MK-801, PR, SR and BR demonstrated significant neuroprotective effect against excessive neuronal cell death and apoptosis induced by the OGD insult. Especially, PR revealed similar neuroprotective effect to MK-801 and RR demonstrated weak neuroprotective effect. Conclusions : These results suggest that OHSC can be a suitable method for screening of neuroprotective effects of medicinal herbs. (This work was supported by the research program of Dongguk University and Grant 01-PJ9-PG1-01CO03-0003 from Ministry of Health & Welfare.)

  • PDF

A Study of Neuroproctective Effect of Bupleuri Radix on Hippocampal Neurons (시호(柴胡)의 뇌해마 신경세포 보호효능에 대한 연구)

  • Lee, Won-Chul;Shin, Kwang-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.227-241
    • /
    • 2004
  • Objective : This study was performed to investigate neuroprotective effects of Bupleuri Radix against oxidative and ischemic damages. Method : To observe the neuroprotective effects against ischemic damage, ischemic insult was induced by oxygen/glucose deprivation (OGD) on organotypic hippocampal slice cultures (OHSC) from 1 week-old Sprague-Dawley rats. Propidium iodide (PI) fluorescence-stained neuronal dead-cell areas, area percentages and TUNEL-positive apoptotic cells in CA1 and dentate gyrus, and LDH levels in culture media of the OHSC were measured following Bupleuri Radix extract treatment. Result : The following results were obtained: (1) The $5\;{\mu}g/ml$ of Bupleuri Radix treatment demonstrated a significant decrease in PI fluorescence-stained neuronal dead-cell areas and area percentage in CA1 region of the OHSC from 18 hrs to 48 hrs following the OGD. The $50\;{\mu}g/ml$ of Bupleuri Radix treatment was also significant from 6 hrs to 48 hrs following the OGD and was more effective. (2) The 5 and $50\;{\mu}g/ml$ of Bupleuri Radix treatment demonstrated a significant decrease in PI fluorescence-stained neuronal dead-cell areas and area percentage in DG region of the OHSC from 6 hrs to 48 hrs following the OGD. The $50\;{\mu}g/ml$ treatment was more effective than the $5\;{\mu}g/ml$ treatment. (3) Bupleuri Radix treatment demonstrated a significant decrease in TUNEL-positive apoptotic cells in CA1 region (with 5 and $50\;{\mu}g/ml$) and in DG region (with $50\;{\mu}g/ml$) of the OHSC damaged by the OGD. (4) Bupleuri Radix treatment demonstrated a significant decrease in LDH concentrations in culture media of the OHSC damaged by the OGD. Conclusion : These results suggest that Bupleuri Radix has neuroprotective and control effects on inflammatory and immune responses where there has been ischemic damage to the central nervous system.

  • PDF

Injury of Neurons by Oxygen-Glucose Deprivation in Organotypic Hippocampal Slice Culture (뇌 해마조직 절편 배양에서 산소와 당 박탈에 의한 뇌신경세포 손상)

  • Chung, David Chanwook;Hong, Kyung Sik;Kang, Jihui;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1112-1117
    • /
    • 2008
  • Purpose : We intended to observe cell death and apoptotic changes in neurons in organotypic hippocampal slice cultures following oxygen-glucose deprivation (OGD), using propidium iodide (PI) uptake, Fluoro-Jade (FJ) staining, TUNEL staining and immunofluorescent staining for caspase-3. Methods : The hippocampus of 7-day-old rats was cut into $350{\mu}m$ slices. The slices were cultured for 10 d (date in vitro, DIV 10) and and exposed to OGD for 60 min at DIV 10. They were then incubated for reperfusion under normoxic conditions for an additional 48 h. Fluorescence of PI uptake was observed at predetermined intervals, and the cell death percentage was recorded. At 24 h following OGD, the slices were Cryo-cut into $15{\mu}m$ thicknesses, and Fluoro-Jade staining, TUNEL staining, and immunofluorescence staining for caspase-3 were performed. Results : 1) PI uptake was restricted to the pyramidal cell layer and DG in the slices after OGD. The fluorescent intensities of PI increased from 6 to 48 h during the reperfusion stage. The cell death percentage significantly increased time-dependently in CA1 and DG following OGD (P<0.05). 2) At 24 h after OGD, many FJ positive cells were detected in CA1 and DG. Some neurons had distinct nuclei and processes while others had fragmented nuclei and disrupted processes in CA1. TUNEL and immunofluorescent staining for caspase-3 showed increased expression of TUNEL labeling and caspase-3 in CA1 and DG at 24 h after OGD. Conclusion : The numerous dead cells in the slice cultures after OGD tended to display apoptotic changes mediated by the activation of caspase-3.

Neuroprotective and Anti-Oxidative Effect of Puerariae Radix on Hippocampal Neurons and BV-2 Microglia Cells (갈근(葛根)의 뇌해마(腦海馬) 신경세포 손상보호와 항산화(抗酸化) 효능에 대한 연구)

  • Kim, Sang-Hyun;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.416-425
    • /
    • 2005
  • This study demonstrated neuroprotective and anti-oxidative effects of Puerariae Radix for cerebral ischemia. Neuroprotective effects were studied by using oxygen/glucous deprivation of the organotypic hippocampal slice cultures to complement limitations of in vivo and in vitro models for cerebral ischemia study. Anti-oxidative effects were studied on BV-2 microglia cells damaged by $H_2O_2$ and nitric oxide. The results obtained are as follows; The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in CA1 region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in DG region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of TUNEL-positive cells in both CA1 region and DG region of ischemic damaged hippocampus cultures. The group treated with $50\;{\mu}g/m{\ell}$ of Puerariae Radix demonstrated significant decrease of TUNEL-positive cells in CA1 region. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of LDH concentrations in culture media of ischemic damaged hippocampus cultures. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant increases of cell viabilities of BV-2 microglia cells damaged by $H_2O_2$. The group treated with $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant increase of cell viability of BV-2 microglia cells damaged by nitric oxide. These results suggested that Puerariae Radix of cerebral ischemic revealed neuroprotective effects through the control effect of apoptosis and oxidative damages.

Anti-Oxidative and Neuroprotective Effects of Rhei Rhizoma on BV-2 Microglia Cells and Hippocampal Neurons (대황(大黃)의 항산화와 신경세포손상 보호효능에 대한 연구)

  • Myung, Sung-Ha;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.647-655
    • /
    • 2005
  • This study demonstrated anti-oxidative and neuroprotective effects of Rhei Rhizoma. Anti-oxidative effects were studied on BV-2 microglia cells damaged by $H_2O_2$ and nitric oxide. Neuroprotective effects were studied by using oxygen/glucose deprivation of the organotypic hippocampal slice cultures. The results obtained are as follows; The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in CA1 region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in CA1 region, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in dentate gyrus of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in dentate gyrus, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of TUNEL-positive cells in both CA1 region and dentate gyrus of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated significant decrease of TUNEL-positive cells in CA1 region, but not in dentate gyrus of ischemic damaged hippocampus. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of LDH concentrations in culture media of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated decrease of LDH concentrations in culture media, but it was not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant increases of cell viabilities of BV-2 microglia cells damaged by $H_2O_2$. The group treated with 50 mg/ml of Puerariae Radix demonstrated increase of cell viability of BV-2 microglia cells, but it was not significant statistically. The group treated with 0.5 mg/ml of Puerariae Radix revealed significant increase of cell viability of BV-2 microglia cells damaged by nitric oxide. The groups treated with 5 and 50 mg/ml of Puerariae Radix demonstrated increases of cell viabilities of BV-2 microglia cells, but these were not significant statistically. These results suggested that Puerariae Radix revealed neuroprotective effects through the control effect of apoptosis and oxidative damages.

The Morphologic Changes of Parvalbumin- Immunoreactive Interneurons of the Dentate Gyrus in Kainate-Treated Mouse Hippocampal Slice Culture Epilepsy Model (Kainic Acid로 처리한 해마박편배양 마우스 간질모델에서 치아이랑 Parvalbumin 면역 반응성 사이신경세포의 형태학적 변화)

  • Chung, Hee Sun;Shin, Mi-Young;Kim, Young-Hoon;Lee, In-Goo;Whang, Kyung-Tai;Kim, Myung-Suk
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.12
    • /
    • pp.1551-1558
    • /
    • 2002
  • Purpose : Loss of hippocampal interneurons in dentate gyrus has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainic acid(KA). Interneurons contain $Ca^{2+}$- binding protein parvalbumin(PV). The effects of kainic acid on parvalbumin-immunoreactive (PV-IR) interneurons in dentate gyrus were investigated in organotypic hippocampal slice cultures. Methods : Cultured hippocampal slices from postnatal day nine C57/BL6 mice were exposed to $10{\mu}M$ KA, and were observed at 0, 8, 24, 48, 72 hours after a one hour KA exposure. Neuronal injury was determined by morphologic changes of PV-IR interneuron in dentate gyrus. Results : Transient(1 hour) exposure of hippocampal explant cultures to KA produced marked varicosities in dendrites of PV-IR interneuron in dentate gyrus and the shaft of interbeaded dendrite is often much thinner than those in control. The presence of varicosities in dendrites was reversible with KA washout. The dendrites of KA treated explants were no longer beaded at 8, 24, 48 and 72 hours after KA exposure. The number of cells in PV-IR interneurons in dentate gyrus was decreased at 0, 8 hours after exposure. But there was no significant difference in 24, 48 and 72 hours recovery group compared with control group. Conclusion : The results suggested that loss of PV-IR interneurons in dentate gyrus is transient, and is not accompanied by PV-IR interneuronal cell death.