• Title/Summary/Keyword: organic toxicity

Search Result 342, Processing Time 0.026 seconds

유기오염물의 분해에 의한 오염토양내 비소종 변화 영향

  • 천찬란;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.347-350
    • /
    • 2002
  • Arsenic speciation changes between As(V) and As(III) are subject to changes in accordance with redox conditions in the environment. It is common to find contaminated sites associated with mixed wastes including both organic pollutants and heavy metals. We conducted microcosm experiment under hypothesis that the co-disposed organic pollutants would influence on the arsenic forms and concentrations, via degradation of the organic pollutants and the consequent impact on the redox conditions in soil. Artificially contaminated soil samples were run for 40 days with control samples without artificial contamination. We noticed arsenic in the contaminated soil showed different behaviour compared with the arsenic in the control soil. The findings indicate degradation of organic pollutants in the contaminated soil influenced on the arsenic speciation and concentrations. A further work is needed to understand the process quantitatively. However, we could confirm that degradation of organic pollutants can influence on the abiotic processes associated with geochemical reactions in contaminated soil. Degradation of organic pollutants can increase the mobility and toxicity of arsenic in soil and sediment by changing redox conditions in the geological media and subsequently from As(V) to As(III).

  • PDF

Biological and Ecological Considerations of the Freshwater Amphipod, Diporeia spp.

  • Song, Ki-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.328-336
    • /
    • 2003
  • Biological and ecological characteristics of Diporeia spp. are described including size, growth, life cycle, energy storage, temperature effect, bioturbation, feeding depth and sediment ingestion of Diporeia. Bioaccumulation and toxicity of organic contaminants and trace metals were reviewed in addition to an examination of the relationships among various condition indexes (i.e. wet weight, dry weight and body length) of Diporeia.

A Study on the Combustion Characteristics of Organic Insulation Materials According to the Gas Toxicity Evaluation Method (가스유해성 평가방법에 따른 유기단열재의 연소특성에 관한 연구)

  • Shim, Ji-Hun;Lee, Jae-Geol;Han, Kyoung-Ho;Kim, Ju-Wan;Song, Seok-Hun;Jo, Hyung-Won;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.519-524
    • /
    • 2022
  • Domestic building finishing materials are being evaluated according to KS F 2271 standards according to the notification of the Ministry of Land, Infrastructure and Transport, and this test is evaluated using laboratory animals. In this study, experiments were conducted on highly combustible organic insulation materials such as EPS, urethane, and phenolic foam. The purpose of this study was to analyze the cause of the behavioral suspension of the experimental mice by measuring the average behavioral suspension time of the mice caused by the harmful gas generated when these three types of insulation materials were burned. FTIR analysis and smoke density experiment were performed as a cause analysis method for the behavioral suspension of mice, and the experimental results were analyzed by dividing the causes of behavioral suspension into suffocation by particulate matter and toxic inhalation by gaseous substances. As a result of the test, urethane was evaluated as the most harmful insulation material, and as a result of FTIR analysis and smoke density test as a cause analysis for the gas toxicity test results, it is judged that the behavioral stop of the rats by suffocation is higher than the effect of toxic inhalation. This study is a basic study on the cause analysis of harmful gases, and it will be necessary to prepare the toxicity basis and analyze various materials and gases.

Ecotoxicological effects of ballast water effluent teated by an electrolytic method on marine environment

  • Kim, Tae Won;Kim, Keun-Yong;Shon, Myung-Baek;Kim, Young-Soo;Lee, Ji Hyun;Moon, Chang Ho;Son, Min Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.1010-1020
    • /
    • 2014
  • Ballast water effluent treated by an electrolytic method contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for three marine pelagic organisms, i.e., diatom Skeletonema costatum, rotifer Brachionus plicatilis and fish Paralichthys olivaceus. The biological toxicity test revealed that S. costatum was the only organism that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 12.5%, 25.0% and 83.3%, respectively, at brackish water condition. In contrast, it showed insignificant toxicity at seawater condition. B. plicatilis and P. olivaceus also showed no toxicities to the effluent at the both salinity conditions. Meanwhile, chemical analysis revealed that the ballast water effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 20 DBPs including bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs) and chloropicrin. Based on ERA, the 20 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. Except monobromoacetic acid, the ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other 19 DBPs did not exceed 1. Thus, our results of WET testing and ERA indicated that the ballast water effluent treated by electrolysis and subsequently neutralization was considered to have no adverse impacts on marine environment.

Ecotoxicological Effects of NaDCC injection method in Ballast Water Management system on Marine Environments (NaDCC 주입 선박평형수 처리기술의 해양생태위해성에 대한 연구)

  • Kim, Tae won;Moon, Chang Ho;Kim, Young Ryun;Son, Min Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.236-236
    • /
    • 2017
  • Effluent treated by an NaDCC injection method in Ballast water management system (BWMS) contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for four marine pelagic and freshwater organisms, i.e., diatom Skeletonema costatum, Navicula pellicuosa, chlorophyta Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer Brachionus plicatilis, Brachionus calyciflorus and fish Cyprinodon variegatus, Pimephales promelas. The biological toxicity test revealed that algae was the only biota that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 25-50%, 50-100% and >100%, respectively, at three water condition, but did not show any significant toxicities on other biota. Meanwhile, chemical analysis revealed that the BWMS effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 25 DBPs such as bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs), chloropicrin and Isocyanuric acid. Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other DBPs did not exceed 1 for General harbor environment. However, four substances (Isocyanuric acid, Tribromomethane, Chloropicrin and Monochloroacetic acid) were exceed 1 for Nearship environment. But observed toxicity in the test water on algal growth inhibition would be mitigated by normal dilution factor of 5 applied for nearship exposure. Thus, our results of WET testing and ERA showed that the BWMS effluent treated by NaDCC injection method would have no adverse impacts on marine environment.

  • PDF

Early Life Stage Toxicity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Crucian Carp (Carassius auratus) (붕어 수정란을 이용한 다이옥신의 초기발생단계 독성평가)

  • Park, Yong-Joo;Kim, Ha-Ryong;Lee, Min-Jee;Lee, Wan-Ok;Lee, Jung-Sick;Chung, Kyu-Hyuck;Oh, Seung-Min
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.241-251
    • /
    • 2010
  • Crucian carp (Carassius auratus) has been used as the sentinel species for POPs (Persistent Organic Pollutants) monitoring in aquatic environment. However, there is little information for dioxin toxicity and especially, early life stage toxicity in crucian carp have been never carried out. In this study, we investigated several toxic effects for 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) in fertilized egg obtained by natural fertilization from crucian carp. The embryos at 3 h post-fertilization (hpf) were treated with 0.039, 0.156, 0.625, and 2.5 (${\mu}g/L$) TCDD by waterborne exposure for 60 minutes and changed with fresh water 2 times per day. Fertilized eggs started hatching at 51 hpf and TCDD exposed embryo showed decrease of hatching rate in a dose-dependent manner at 75 hpf. Pericardial edema was continuously observed in larvae exposed to TCDD from hatching start time (51 hpf), followed by the onset of mortality. In addition, AhR-related gene, CYP1A was clearly increased by TCDD in a dose dependent manner. These results indicated that fertilized eggs obtained from crucian carp have the TCDD related gene regulation and a distinct TCDD developmental toxicity syndrome by TCDD exposure. Therefore, we suggested that early life stage test in crucian carp could be used as test methods on dioxins toxicity.

Review : Ionic Liquids as Green Solvent (리뷰 : 녹색용매로서의 이온성액체 기술동향)

  • Lee, Junwung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.690-702
    • /
    • 2013
  • Ionic liquids(ILs) have been the most investigated chemicals among green solvents including water, glycerol, supercritical carbon dioxdie($scCO_2$). ILs are attracting organic as well as inorganic chemicals because most ionic liquids' vapor pressures are very low so that ILs are liquids phase at ambient conditions. ILs are composed of various anions and cations, thus chemists can design functionalized solvents and/or catalysts that can be used in specific synthetic reactions by means of combinations of different ions. Many scientists believe ILs being green materials because of its low vapor pressure as well as the flexibility in controlling the chemical and physical properties. In this review the author describes recent development of ILs focused on imidazolium and pyridinium ILs which are being most investigated presently. In order to apply this materials in industrial level, the toxicity matter must be resolved first. In this regard, the author describes recent research trend regarding environmental effects by ILs as well as some meaningful results as well.

Landfill Leachate Treatment and Boron Removal by Reverse Osmosis (RO막을 이용한 매립지 침출수 처리 및 붕소 제거)

  • Jung, Soojung;Na, Sukhyun;Bae, Sangok;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.657-662
    • /
    • 2012
  • This study was carried out to evaluate the removal rate of organic and inorganic matters from landfill leachate using pre-treatment process as coagulation and limonite adsorption, and membrane process as RO (reverse osmosis) and NF(nanofiltration). By adding limonite adsorption as pre-treatment process, about 40% of organic matters in leachate was removed through pre-treatment process and 74.7% of boron was removed after RO process without pH adjustment. The rejection rate of boron in RO process mainly depends on the pH and increased at pH value of 10. RO process was performed as two stage system adjusting pH condtion to 7 and 10 in second RO stage for boron removal. Most (>90%) of TOC, Cl- and inorganic matters as Ca was rejected in first RO stage, the residue was rejected in second RO and the rejection rate was above 97%. Considering economic efficiency of operation cost, NF substituted for the first RO and total removal rate of TOC was above 90%. Through RO system toxicity to Daphnia in leachate was removed completely.