• Title/Summary/Keyword: organic thin-film transistor

Search Result 285, Processing Time 0.03 seconds

Recent Trends in the Development of Organic Thin Film Transistor Including SAM Dielectric (SAM 절연체를 이용한 유기박막트랜지스터 개발의 최근 동향)

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • A newly developed OTFT manufacturing process using the combination of self-assembly techniques and vapor phase polymerization method revealed that a thick $SiO_2$ dielectric layer (100~200 nm) is not well compatible with conducting polymer electrode, thereby resulting in still recognizable contact resistance, unstable $V_{th}$ and leaking off current. A couple of very recent studies showed that this issue may be solved by replacing such inorganic dielectric with a self-assembled monolayer or multilayer (organic) dielectric. Therefore, this short review introduces recent trends in the development of high performance thin film transistor consisting of both organic semiconductor and SAM dielectric.

  • PDF

The Effect of Hafnium Dioxide Nanofilm on the Organic Thin Film Transistor

  • Choi, Woon-Seop;Song, Young-Gi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1315-1318
    • /
    • 2007
  • Hafnium dioxide nano film as gate insulator for organic thin film transistors is prepared by atomic layer deposition. Mostly crystalline of $HfO_2$ films can be obtained with oxygen plasma and with water at relatively low temperature of $150^{\circ}C$. $HfO_2$ was deposited as a uniform rate $1.2A^{\circ}/cycle$. The morphology and performances of OTFT will be discussed.

  • PDF

Electrical Properties of Field Effect Transistor using F16CuPc (F16CuPc를 이용한 Field Effect Transistor의 전기적 특성 연구)

  • Lee, Ho-Shik;Park, Young-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.389-390
    • /
    • 2008
  • We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine ($F_{16}CuPc$) as an active layer. And we observed the surface morphology of the $F_{16}CuPc$ thin film. The $F_{16}CuPc$ thin film thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in $F_{16}CuPc$ FET and we calculated the effective mobility.

  • PDF

A Fabrication and Characterization of Organic Thin Film Transistor Using Conjugated Oligomers (공액성 소중합체를 이용한 유기 박막 트랜지스터 제작 및 특성에 관한 연구)

  • Kim, Ok-Byoung;Kim, Duck-Young;Kim, Young-Kwan;Sohn, Byoung-Chung;Kim, Jung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.313-316
    • /
    • 1999
  • Organic semiconductors based on conjugated thiophene oligomer have great potential to be utilized as an active layer for electronic and optoelectronic devices. In this study, a conjugated oligomer such as ${\alpha}$-sexithiophene (${\alpha}$-6T) thin films was prepared by the Organic Molecular Beam Deposition (OMBD), and various electrode materials were also deposited by a simple vacuum evaporation, respectively. Those films were photolithographically patterned for the electrical measurements. Electrical charact-erization of the thin film transistor with various channel length were executed and the field effect mobility of these thin film transistors were also calculated by the formula using the experimental data.

Wet Chemical Surface Modification of ITO by Self Assembled Monolayer for Organic Thin Film Transistor (유기 트랜지스터를 위한 자가조립단층을 이용한 ITO의 습식 표면개질)

  • Jee, Seung-Hyun;Kim, Soo-Ho;Ko, Jae-Hwan;Park, Hoon;Lee, Kwang-Hoon;Yoon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.450-450
    • /
    • 2007
  • Indium tin oxide (ITO), which is used as an electrode in organic thin film transistors (OTFT), was modified with a self-assembled monolayer (SAM) by wet chemical surface modification. The surface of the ITO was treated by dipping method in a solution of 2-chloroethane phosphonic acid (2-CEPA) at room temperature. The work function in the ITO which was modified with the SAM in the 2-CEPA had 5.43eV. A surface energy and a transmittance were unchanged in an error range. On this study, therefore, possibility of ohmic contact is showed in the interface between the ITO and the organic semiconductors. These results suggest that the treatment of the ITO with the SAM can greatly enhance the performance of the OTFT.

  • PDF

Study on the Organic Gate Insulators Using VDP Method (VDP(Vapor Deposition Polymerization) 방법을 이용한 유기 게이트 절연막의 대한 연구)

  • Pyo, Sang-Woo;Shim, Jae-Hoon;Kim, Jung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.185-190
    • /
    • 2003
  • In this paper, it was demonstrated that the organic thin film transistors were fabricated by the organic gate insulators with vapor deposition polymerization (VDP) processing. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and ODA, and cured at $150^{\circ}C$ for 1hr. Electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure obtained to the saturated slop in the saturation region and the subthreshold non-linearity in the triode region. Field effect mobility, threshold voltage, and on-off current ratio in $0.45\;{\mu}m$ thick gate dielectric layer were about $0.17\;cm^2/Vs$, -7 V, and $10^6\;A/A$, respectively. Details on the explanation of compared to organic thin-film transistors (OTFTS) electrical characteristics of ODPA-ODA and 6FDA-ODA as gate insulators by fabricated thermal co-deposition method.

  • PDF

An Electrical Characteristics on the Pentacene-Based Organic Thin-Film Transistors using PVA Alignment Layer (PVA 배열층을 이용한 펜타신 유기 박막 트랜지스터의 전기적 특성)

  • Jun, Hyeon-Sung;Oh, Hwan-Sool
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.177-182
    • /
    • 2010
  • The pentacene-based organic thin film transistors(OTFTs) using polyvinylalcohol(PVA) alignment layer were fabricated on the $SiO_2$ evaporated to n-type (111) Si substrates. The pentacene film was deposited by thermally evaporated at $10^{-7}$ torr. X-ray diffraction (XRD) and atomic force microscope(AFM) measurement showed pentacene film which deposited on rubbed PVA layers were partially crystallized at (001) plane. The pentacene OTFTs with PVA layers rubbed perpendicular to the direction of current flow was shown to align better orientation than parallel rubbed case and thus to enhance the mobility and saturation current by a factor of 2.3 respectively. We obtained mobility by 0.026 $cm^2$/Vs and on-off current ratio by ${\sim}10^8$.