• Title/Summary/Keyword: organic substance

Search Result 318, Processing Time 0.026 seconds

Influence of Fluorescent Dye Doping on Efficiency of Red Organic Light-emitting Diodes (형광염료 도핑이 적색 유기 발광 소자의 효율에 미치는 영향)

  • Lee, Jeong-Gu;Lim, Kee-Joe
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.18-24
    • /
    • 2008
  • An organic light-emitting diode(OLED) has advantages of low power driving, self light-emitting, wide viewing angle, excellent high resolution, full color, high reproduction, fast response speed, simple manufacturing process, or the like. However, there are still a number of challenges to get over in order to put it to practical use as a high performance display. First of all, the most important thing is to improve the efficiency of the OLED element in order to commercialize it. To this end, its efficiency can be improved by lowering the driving voltage through the improvement of structure of the OLED element and the application of new organic substance. Therefore, in this study, we have manufactured a red OLED element by applying fluorescent dyes to the emitting layer of the element having the structure of ITO/TPD/ Znq2+DCJTB /Znq2/Al and the structure of ITO/CuPc/NPB/ Alq3+DCJTB/Alq3/Al, in order to light-emitting various colors or improve the brightness and the efficiency, and then we have evaluated its electrical and optical characteristics.

Changes in Organic acid, Mineral, Color, Curcumin and Bitter Substance of Curcuma longa L. and Curcuma atomatica Salib According to Picking Time (울금 품종과 채취시기별 유기산, 무기질, 색도, Curcumin 및 쓴맛의 변화)

  • Kang, Seong-Koo
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.633-638
    • /
    • 2007
  • Changes in organic acid, mineral, color, curcumin and bitter taste of Curcuma longa L. (autumn woolgeom in Korean) and Curcuma atomatica Salib (spring woolgeom) were investigated according to picking time. Oxalic and lactic acid were gradually increased, and then malic acid and malonic acid were decreased by extending the picking time. Total organic acid was increased by extending the picking time and then decreased after January of the coming year. Minerals were increased by extending the picking time and decreased slightly after the coming year. Hunter color index, L, a and b, was increased by extending the picking time. Contents of curcumin in spring woolgeom was slowly increased by extending the picking time and autumn woolgeom was $1.8{\sim}2.5$ times higher than spring woolgeom. Intensity of bitter taste in two woolgeoms were not different by picking time and extracting solvents. Bitterness of spring woolgeom was strong as compared to autumn woolgeom.

The Influence of Fluorescent Dye Doping on Efficiency of Organic Light-Emitting Diodes (형광염료 도핑이 유기발광소자의 효율에 미치는 영향)

  • Lee, jeong-gu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.301-305
    • /
    • 2008
  • An organic light-emitting diode(OLED) has advantages of low power driving, self light-emitting, wide viewing angle, excellent high resolution, full color, high reproduction, fast response speed, simple manufacturing process, or the like. However, there are still a number of challenges to get over in order to put it to practical use as a high performance display. First of all, the most important thing is to improve the efficiency of the OLED element in order to commercialize it. To this end, its efficiency can be improved by lowering the driving voltage through the improvement of structure of the OLED element and the application of new organic substance. Therefore, in this study, we have manufactured a red OLED element by applying fluorescent dyes to the emitting layer of the element having the structure of ITO/TPD/Znq2+DCJTB/Znq2/Al and the structure of ITO/CuPc/NPB/Alq3+DCJTB/Alq3/Al, in order to light-emitting various colors or improve the brightness and the efficiency, and then we have evaluated its electrical and optical characteristics.

  • PDF

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.736-743
    • /
    • 2015
  • Organic matter plays important roles in soil ecosystem in terms of carbon and nitrogen cycles. Due to recent concerns on climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. It is necessary to understand behavior of soil carbon for evaluating decomposition or sequestration of organic matter and analyzing potential carbon decomposition pattern about the kinds of organic matter sources to cope with well. In order to evaluate decomposition of soil carbon according to organic material during cultivating rice in paddy field, we treated organic material such as hairy vetch, rice straw, oil cake fertilizer, and manure compost at $50{\times}50{\times}20cm$ blocks made of wood board, and analyzed carbon contents of fulvic acid and humic acid fraction, and total carbon periodically in 2013 and 2014. Soil sampling was conducted on monthly basis. Four Kinds of organic matter were mixed with soil in treatment plots on 2 weeks before transplanting of rice. The treatment of animal compost showed the highest changes of total carbon, which showed $7.9gkg^{-1}$ in May 2013 to $11.6gkg^{-1}$ in October 2014. Fulvic acid fraction which is considered to easily decompose ranged from 1 to $2gkg^{-1}$. Humic acid fraction was changed between 1 to $3gkg^{-1}$ in all treatments until organic material had been applied in 2014. From May to August in the second year, the contents of humic acid fraction increased to about $4gkg^{-1}$. The average of humic fraction carbon at treatments of animal compost was recorded highest among treatments during two years, $2.1gkg^{-1}$. The treatment of animal compost has showed the lowest ratio of fulvic acid fraction, humic acid fraction compared with other treatments. The average ratio of fulvic fraction carbon in soil ranged from 16 to 20%, and humic fraction carbon ranged from 19 to 22%. In conclusion, animal compost including wood as bulking agent is superior in sequestrating carbon at agricultural land to other kinds of raw plant residue.

Removal of Volatile Organic Silicon Compounds (Siloxanes) from Landfill Gas by Adsorbents (흡착제에 의한 매립가스 중 휘발성 유기규소화합물(실록산) 제거특성)

  • Seo, Dong-Cheon;Song, Soo-Sung;Won, Jong-Choul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.793-802
    • /
    • 2009
  • Adsorption properties were estimated for the organic silicon compounds (siloxanes) in an actual landfill gas (LFG) using adsorbents such as coconut activated carbon, coal activated carbon, silica gel, sulfur adsorbent, carbonized sludge, and molecular sieve 13X. Coconut activated carbon showed the highest removal efficiency of more than 95%. The desorption of hexamethyldisiloxane (L2) from the adsorbent, however, resulted in the remarkable concentration variation of the compound in the treated gas. Silica gel, which had high adsorption capacity for L2 in single substance adsorption experiment in the other study, could not remove the component in the actual landfill gas while it adsorbed well octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) in the LFG. Therefore the elimination of hexamethyldisiloxane is an important factor to determine the level of total organosilicon compound in pretreated landfill gas. Moreover, the L2 from the actual landfill gas was effectively adsorbed by the serial adsorption test using two columns packed with coconut activated carbon which has the great capacity of siloxanes removal among others. In order to utilize efficiently LFG as a renewable energy, the emission and adsorptive characteristics of the substance to be treated should be considered for the organization, operation, and management of pretreatment process.

Distribution of Organic and Inorganic Arsenic Species in Groundwater and Surface Water Around the Ulsan Mine (울산광산 주변지역 수계에서 유기 및 무기 비소 종 분포)

  • Kim, Youn-Tae;Woo, Nam-Chil;Yoon, Hye-On;Yoon, Cheol-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.689-697
    • /
    • 2006
  • Distribution and speciation of arsenic in water resources was investigated in the Ulsan mine area. In 62% of uoundwater samples from the mine area, total As concentrations exceeded 0.05 mg/l, the Korean Drinking Water Standard. As(V) was the major type in groundwater with minor As(III). Arsenic species appeared to be in transition stages following redox changes after exposure to the air through the monitoring wells. In areas around the mine, the mine and Cheongog spring appeared to be the sources of arsenic contamination of water resources. The spring showed 0.345 mg/1-As, as much as seven times of the Korean standard. Groundwater and stream samples showed As-concentrations greater than 0.05 mg/l in 30% and 33% samples, respectively, and 60 and 67% of samples exceeded 0.01 mg/l of WHO guideline, respectively. Again, As(V) was a dominant species, however, several samples had As(III) in appreciable levels. In one stream sample, organic species including DMA and AsB were detected in low levels, probably resulted from transformation or related biogeochemical processes.

Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments (저수지 퇴적물에서 질소, 인 및 유기물질 용출차단을 위한 활성탄과 폐콘크리트의 피복재로서 적용)

  • Kang, Ku;Kim, Won-Jae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • This study aims to assess the effectiveness of activated carbon (AC) and crushed concrete (CC) as capping material to block the release of nitrogen, phosphorus, and organic substance from reservoir sediments. The efficiency of AC and CC as capping material was evaluated in a reactor in which a 1 or 3 cm thick layer of capping materials was placed on the sediments collected from Mansu reservoir in Anseong-city. Dissolved oxygen (DO) concentration, total nitrogen (T-N), total phosphorus (T-P), and chemical oxygen demand (COD) concentration in reservoir water above the uncapped sediments and capping material were monitored for 45 days. The release rate of T-N was in the following increasing order: AC 3 cm ($1.18mg/m^2{\cdot}d$) < CC 1 cm ($2.66mg/m^2{\cdot}d$) < AC 1 cm ($2.94mg/m^2{\cdot}d$) < CC 3 cm ($3.42mg/m^2{\cdot}d$) < uncapped ($4.59mg/m^2{\cdot}d$). The release rate of T-P was in the following increasing order: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($0.03mg/m^2{\cdot}d$) < AC 1 cm capped ($0.07mg/m^2{\cdot}d$) < uncapped ($0.24mg/m^2{\cdot}d$). The release of nitrogen and phosphorus were effectively blocked by AC capping of 3 cm thickness, and CC capping of 3 cm thickness effectively controlled the release of phosphorus. The order of increasing COD release rate was as follows: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($5.03mg/m^2{\cdot}d$) < AC 1 cm ($7.28mg/m^2{\cdot}d$) < uncapped ($10.05mg/m^2{\cdot}d$), indicating that AC and CC capping effectively interrupted the release of organic contaminants from the sediments. It was concluded that AC and CC could effectively block the release of T-N, T-P and COD release from contaminated reservoir sediments.

Bacterial growth and carbon-to-phosphorus consumption in drinking water with different carbon and phosphorus levels (수돗물의 탄소와 인 농도에 따른 세균의 생장과 C/P 소모율)

  • Choi, Sung-Chan;Park, e-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.689-701
    • /
    • 2013
  • Bacterial growth and corresponding consumption of carbon and phosphorus were examined in which tap water samples containing a very low concentration of free chlorine were supplemented with organic carbon and/or phosphorus. The experiments were performed in a fed-batch mode under a controlled temperature of $20^{\circ}C$. In the phosphorus alone-added water, there was no significant increase in bacterial numbers measured as heterotrophic plate count (HPC) in the bulk water. However, bacterial growth was stimulated by the addition of carbon (e.g., bulk HPC levels increased to $10^3CFU/mL$) and further stimulated by the combined addition of carbon and phosphorus (e.g., bulk HPC to $10^5CFU/mL$). The same effects were observed in biofilm HPC and biomass formed on polyethylene (PE) slide surfaces. In the water where organic carbon and phosphorus were added together, the highest biofilm HPC and biomass (measured as extracellular polymeric substance components) densities were observed which were $7.6{\times}10^5CFU/cm^2$ and $5.3{\mu}g/cm^2$, respectively. In addition to the bacterial growth, additions of organic carbon and/or phosphorus resulted in different bacterial carbon-to-phosphorus (C/P) consumption ratios. Compared to a typical bacterial C/P consumption ratio of 100:1, a higher C/P ratio (590:1) occurred in the carbon alone-added water, while a lower ratio (40:1) in phosphorus alone-added water. Comparative value (80:1) of C/P ratio was also observed in the water where organic carbon and phosphorus were added together. At the given experimental conditions, bacterial growth was deemed to be more sensitive to microbially available organic carbon than phosphorus. The effect of phosphorus addition, which resulted in a lower C/P consumption ratio, seemed to be tightly associated with the presence of microbially available organic carbon. These results suggested that the control of extrinsic carbon influx seemed to be more important to minimize bacterial regrowth in drinking water system, since even low content of phosphorus naturally occurring in drinking water was enough to allow a bacterial growth.

A Study on the Identification of Animal Hair in Food (식품 중 동물 털 이물의 판별법 연구)

  • Lee, Jae-Hwang;Park, Young-Eun;Lim, Byung-Chul;Kim, Ju-Shin;Choi, Jong-Hyun;Kang, Tae Sun;Lee, Jin-Ha;Kwon, Kisung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • Foreign materials with a variety of types and sizes are found in food; thus, extraordinary efforts and various analytical methods are required to identify the types of foreign materials and to find out accurate causes of how they unintentionally enter food. In this study, human, cow, pig, mouse, duck, goose, dog, and cat were chosen as various types of animal hairs because they can be frequently incorporated into food during its production or consumption step. We morphologically analyzed them using stereoscopic, optical, SUMP method, and scanning electron microscopes, showing differences in each type. In addition, X-ray fluorescence spectrometer (XRF) was used to analysis chemical compositions ($^{11}Na{\sim}^{92}U$, Mass%) of samples. As a result, we observed that mammalian hairs were mainly composed of sulfur. Organic compounds of samples were further analyzed by fourier transform infrared spectroscopy (FT-IR) that can compare spectra of given materials; however, this method did not show significant differences in each sample. In this study, we suggest a rapid method for the identification of the causes and types of foreign materials in food.