• 제목/요약/키워드: organic solar cells

검색결과 306건 처리시간 0.06초

유기태양전지의 효율 및 수명 향상을 위한 기능성 계면 소재 연구 (Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell)

  • 홍기현;박선영;임동찬
    • 공업화학
    • /
    • 제25권5호
    • /
    • pp.447-454
    • /
    • 2014
  • 유기태양전지는 제조비용이 저렴하고 플렉서블 전자소자에 적용이 가능하다는 장점들로 인해 최근 많은 연구가 진행되고 있다. 일반적인 정구조의 태양전지(conventional structured solar cell)의 경우 10%대의 향상된 발전 효율을 보이고 있으나, 여전히 기타 Si 및 CIGS 등과 같은 태양전지에 비해 낮은 효율과 짧은 수명은 상용화의 걸림돌로 작용하고 있다. 일반적으로 유기태양전지의 짧은 수명은 유기물의 광산화뿐만 아니라 수분 및 산소에 의한 음극, 양극 소재의 부식으로 인한 소재/소자 열화 문제로 설명되어지고 있다. 한편 이와 같은 문제점을 해결하기 위해 새로운 소자 구조(역구조 태양 전지; Inverted structured solar cell)가 제안되었으며 전자 수송층 및 기능성 계면 소재 연구를 통한 발전 효율 및 수명 향상에 관한 연구가 꾸준히 되고 있다. 그 결과 최근 2D/3D 산화 아연(ZnO) 소재를 역구조 태양전지의 전자 수송층으로 적용하고 건,습식 표면 후처리를 통해 약 9% 수준의 발전효율을 달성하였다. 본 총설에서는 ZnO를 기반으로 하는 전자 수송층 소재의 연구 동향 및 역구조 태양전지의 효율 향상 기술에 관한 최신 연구 동향을 소개하고자 한다.

Self-Assembly of Pentacene Molecules on Epitaxial Graphene

  • Jung, Woo-Sung;Lee, Jun-Hae;Ahn, Sung-Joon;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.230-230
    • /
    • 2012
  • Graphene have showed promising performance as electrodes of organic devices such as organic transistors, light-emitting diodes, and photovoltaic solar cells. In particular, among various organic materials of graphene-based organic devices, pentacene has been regarded as one of the promising organic material because of its high mobility, chemical stability. In the bottom-contact device configuration generally used as graphene based pentacene devices, the morphology of the organic semiconductors at the interface between a channel and electrode is crucial to efficient charge transport from the electrode to the channel. For the high quality morphology, understanding of initial stages of pentacene growth is essential. In this study, we investigate self-assembly of pentacene molecules on graphene formed on a 6H-SiC (0001) substrate by scanning tunneling microscopy. At sub-monolayer coverage, adsorption of pentacene molecules on epitaxial graphene is affected by $6{\times}6$ pattern originates from the underlying buffer layer. And the orientation of pentacene in the ordered structure is aligned with the zigzag direction of the edge structure of single layer graphene. As coverage increased, intermolecular interactions become stronger than molecule-substrate interaction. As a result, herringbone structures the consequence of higher intermolecular interaction are observed.

  • PDF

전기화학적 전착에 의한 태양전지용 저가 유연 금속 메쉬 제작 (Preparation of Low-cost and Flexible Metal Mesh Electrode Used in the Hybrid Solar Cell by Simple Electrochemical Depositon)

  • 이주열;이상열;이주영;김만
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.123.1-123.1
    • /
    • 2017
  • Hybrid solar cells have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible and transparent devices. It is critical to fabricate individual layer composed of organic and inorganic materials in the hybrid solar cell at low cost. Therefore, it is required to manufacture cheaply and enhance the photon-to-electricity conversion efficiency of each layer in the flexible solar cell industry. In this research, we fabricated pure Cu metal mesh electrode prepared by using electroplating and/or electroless plating on the Ni mold which was manufacture through photolithography, electroforming, and polishing process. Copper mesh was formed on the surface of nickel metal working master when pulsed electrolytic copper deposition were performed at various plating parameters such as plating time, current density, and so on. After electrodeposition at 2ASD for 5~30seconds, the line/pitch/thickness of copper mesh sheet was $1.8{\sim}2.0/298/0.5{\mu}m$.

  • PDF

Fabrication of an Automatic Color-Tuned System with Flexibility Using a Dry Deposited Photoanode

  • Choi, Dahyun;Park, Yoonchan;Lee, Minji;Kim, Kwangmin;Choi, Jung-Oh;Lee, Caroline Sunyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • 제5권5호
    • /
    • pp.643-650
    • /
    • 2018
  • A self-powered electrochromic device was fabricated on an indium tin oxide-polyethylene naphthalate flexible substrate using a dye-sensitized solar cell (DSSC) as a self-harvesting source; the electrochromic device was naturally bleached and operated under outdoor light conditions. The color of the organic electrochromic polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, was shifted from pale blue to deep blue with an antimony tin oxide film as a charge-balanced material. Electrochromic performance was enhanced by secondary doping using dimethyl sulfoxide. As a result, the device showed stable switching behavior with a high transmittance change difference of 40% at its specific wavelength of 630 nm for 6 hrs. To improve the efficiency of the solar cell, 1.0 wt.% of Ag NWs in the photoanode was applied to the $TiO_2$ photoanode. It resulted in an efficiency of 3.3%, leading to an operating voltage of 0.7 V under xenon lamp conditions. As a result, we built a standalone self-harvesting electrochromic system with the performance of transmittance switching of 29% at 630 nm, by connecting with two solar cells in a device. Thus, a self-harvesting and flexible device was fabricated to operate automatically under the irradiated/dark conditions.

Ag/TiO2미세입자 합성물의 특성 분석 (Characterization of Ag/TiO2 Nanoparticles Synthesis)

  • 강경호;조용기;김순금
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.202-207
    • /
    • 2024
  • This study examines a manufacturing process for the photoelectrode material of dye-sensitized solar cell (DSSC) intending to increase efficiency through the surface plasmon resonance phenomenon of nanoparticles with a composite structure made of Ag and TiO2. This invention involves the use of Ag and TiO2 nanoparticles in the solar cell. These nanoparticles cause surface plasmon resonance, which amplifies and scatters incident solar energy, enhancing the dye's rate of light absorption. It also makes it possible to absorb energy in wavelength ranges that were previously difficult to do, which increases efficiency. Centrifugal separation and heat synthesis are used to create the composite metal structures, and certain combinations are used to decide the particle morphologies. To increase the efficiency of organic solar cells and DSSC, the Ag/TiO2 composite structure is therefore quite likely to be used.

유기태양전지 연구 동향

  • 김경곤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.20-20
    • /
    • 2010
  • Organic based photovoltaics (OPV) have been received a lot of attention because they are lightweight, inexpensive to fabricate and flexible compare to crystalline Si solar cells. In this seminar, several important progresses in the Polymer PV, such as, formation of bulk heterojunction, development of post annealing technique, tandem cell fabrication will be introduced. In addition that, some efforts to achieve the further improvement in the performance of the Polymer PV will be discussed.

  • PDF