• Title/Summary/Keyword: organic soil

Search Result 3,674, Processing Time 0.036 seconds

Soil Carbon Dioxide Flux and Organic Carbon in Grassland after Manure and Ammonium Nitrate Application

  • Lee, Do-Kyoung;Doolittle, James J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.238-244
    • /
    • 2005
  • Fertilization effects on changes in soil $CO_2$ flux and organic C in switchgrass (Panicum virgatum L.) land managed for biomass production were investigated. The mean daily soil $CO_2$ flux in the manure treatment was 5.63 g $CO_2-C\;m^{-2}\;d^{-1}$, and this was significantly higher than the mean value of 3.36 g $CO_2-C\;m^{-2}\;d^{-1}$ in the control. The mean daily $CO_2$ fluxes in N and P fertilizer treatments plots were not different when compared to the value in the control plots. Potentially mineralizable C (PMC), soil microbial biomass C (SMBC), and particulate organic C (POC) were highest at the 0 to 10 cm depth of the manure treatment. Potentially mineralizable C had the strongest correlation with SMBC (r = 0.91) and POC (r = 0.84). There was also a strong correlation between SMBC and POC (r = 0.90). Our results indicated that for the N and P levels studied, fertilization had no impact on temporal changes in soil organic C, but manure application had a significant impact on temporal changes in soil $CO_2$ evolution and active C constituents such as PMC, SMBC, and POC.

Evaluating the Influence of Liquid Organic Polymer on Soil Aggregation and Growth of Perennial Ryegrass (유기중합물이 토양의 입단화와 페레니얼 라이그래스의 성장에 미치는 영향)

  • Lee, Sang-Kook;Minner, David
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.69-72
    • /
    • 2011
  • Soil aggregate is a vigorous procedure including soil physical, chemical, and biological processes. Pore space created by binding these particles together improves retention and exchange of air and water. Various researches have reported that the benefits of organic polymers that may increase aggregate stability. The purpose of the study was to determine if a liquid organic polymer mixture has any influence on perennial ryegrass quality or soil aggregation. $Turf2Max^{(R)}$ was applied to two soils as a source of liquid organic polymer. Fine-loamy soil from local Iowa topsoil with 4.0% organic matter was screened and dried. Commercial baseball infield clay, $QuickDry^{(R)}$, was used as the second soil There were three rates of liquid organic polymer (0, 2, and 4%). there was no visual improvement in turf grass color, quality, or growth by using organic polymer. It is possible that aggregate stability increases with use of organic polymer. The aggregate stability study needs to be repeated in the greenhouse and then substantiated under field conditions for these preliminary observations.

Desorption-Resistance of Hydrophobic Organic Compounds in Natural Soils

  • Shin, Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.26-29
    • /
    • 2001
  • Sorption/desorption Study was conducted to determine desorption-resistance hydrophobic organic compounds in natural soils with low organic carbon content. Sorption/desorption characteristics of chlorobenzene and phenanthrene for both PPI (Petro Processors, Inc. Superfund site) and BM (Bayou Manchac), soils were investigated. Desorption was biphasic including reversible and desorption-resistant compartments. The biphasic sorption parameters indicated the presence of appreciable size of desorption-resistant phase in these soils. A finite maximum capacity of desorption-resistant fraction (equation omitted) was observed after several desorption steps. The apparent organic carbon based Partition coefficient, K(equation omitted) was 10$^{4.92{\pm}0.27}$ for PPI soil and 10$^{4.92{\pm}0.27}$ for BM soil, respectively. The difference in K(equation omitted) was attributed to different characteristics in soil organic matter. The results suggest that desorption-resistance should be considered in remediation and risk assessments in natural soils and sediments.

  • PDF

Biological Turf Restoration

  • Wilson, Carol W.;Kim, Hyung-Ki
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.31-34
    • /
    • 1993
  • There is a growing concern in the United Stares over the environmental and human health implications associated with heavy use of water, pesticides, and inorganic ferilizers in maintaining picture perfect golf courses. There is also a growing awareness that a beautiful course is not necessarily a healthy course. The following discussion reviews the interrelationship of turfgrass and the soil that supports it and provides basic information on currently available alternatives to turf management practices that feature intensive application of inorganic fertilizers. water and pesticides. Soil is a dynamic natural environment in which microorganisms play an important role. Soil contains a large mass of microorganisms which produce thousands of enzymes that can catalyze the transformation and degradation of many organic molecules. (In top soil under optimum conditions may contain 10 billion cells per gram of soil.). Turfgrass and the soil which supports it are interdependent. The natural organic cycle as applied to turf and soil begins with healthy vigorous grass plants storing up the sun's energy in green plant tissues as chemical energy. Animals obtain energy by eating plants and when plants and animals die, their wastes are returned to the soil and provide "food" for soil microorganisms. In the next step of the organic cycle soil microorganisms break down complex plant tissues into more basic forms and make the nutrients available to grass roots. Finally, growing plants extract the available nutrients from the soil. By free operation of this organic cycle, natural grasslands have some of the most fertile soils on earths.

  • PDF

Mechanism of P Solubilization in Vermicompost Treated Red Lateritic Soils

  • Pramanik, Prabhat;Chakraborty, Hritesh;Kim, Pil-Joo
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.188-195
    • /
    • 2011
  • Red lateritic soils are typically low in total organic carbon (TOC) and available phosphorus (AP) content and continuous fertilization is required to obtain desired crop yield. In this experiment, cattle manure in three forms (air-dried, composted and vermicomposted) were applied to red lateritic soil to study their effect on TOC and AP content of soil and probable mechanism of P-solubilization as affected by these treatments were also studied. Vermicompost was the most effective to solubilize insoluble P in red lateritic soil (Alfisols) as compared to other organic amendments (air-dried cattle manure and compost). The highest SPA in vermicompost-treated soil attributed to the comparatively higher concentration of all the three SPA isozymes in these soils. The maximum P-solubilization in these soils might be attributed to the highest SPA and presence of several organic acids like citric, lactic and oxalic acids in vermicompost-treated soils. Since, vermicompost application also increased TOC, mineralizable N and exchangeable K content of soil, vermicompost could be considered as the most rational organic amendment to improve chemical properties of red lateritic soils.

  • PDF

Comparison of Soil seed bank and Soil characteristics in Conventional Paddy field and Organic Paddy field (관행 논과 유기 재배 논의 토양 종자은행과 토양 특성 비교)

  • Jeong Hwan Bang;Jong-Ho Park;Young-Mi Lee;Chul-Lee Chang;Sung-Jun Hong
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.237-247
    • /
    • 2023
  • Paddy fields not only provide a variety of ecosystem services but also serve as crucial habitats for biodiversity conservation. Recently, their ecological value and significance have been increasingly emphasized. Therefore, this study aimed to investigate the characteristics of soil seed banks and analyze their correlation with soil environmental factors in Conventional Paddy field (CP) and Organic Paddy field (OP) with different farming practices. Our results revealed that the vegetation in CP was simple, resulting in low plant diversity in the soil seed banks. On the other hand, the vegetation in OP was relatively diverse, leading to higher plant diversity in the soil seed banks. Additionally, distinct differences in soil environmental characteristics were observed between OP (K, Ca, Mg, Na, Fe, Mn, B↓) and CP (K, Ca, Mg, Na, Fe, Mn, B↑). These results suggest that variations in agricultural practices for rice cultivation have influenced the structure and diversity of vegetation and soil seed banks. Furthermore, these agricultural practices have had both direct and indirect effects on soil environmental factors. Our findings can serve as fundamental data for evaluating biodiversity conservation in agricultural ecosystems, ecosystem restoration, and ecological value assessment.

Long-term Changes in Soil Chemical Properties in Organic Arable Farming Systems in Korea (작물의 지속적인 유기 재배가 토양의 이화학적 특성변화에 미치는 영향)

  • Lee, Yun-Jeong;Choe, Du-Hoi;Kim, Seung-Hwan;Lee, Sang-Min;Lee, Yong-Hwan;Lee, Byung-Mo;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.228-234
    • /
    • 2004
  • In organic farming, nutrients for the crop production are mostly supplied by compost containing various organic materials. The long-term organic cultivation would result in continuous changes of soil chemical properties and fertility. The aim of this study was to investigate the contribution of long-term organic cultivation to the soil fertility in Korea focusing on the chemical properties of soil. Soil samples were collected from organic farms that had been cultivated for 8-10 years after certification of organic product through the conversion periods of 2-3 years. Thereby each organic farm had acquired optimal cultivating techniques and soil condition. We separated organic farms into three groups by cultivating crops, i.e. leaf vegetables, fruit vegetables and fruit trees. In each group, five representative farms were chosen in order to investigate the relationships between application rate of compost and nutrient contents in soil. The application rate of compost was approximately $10-15Mg\;10a^{-1}$ for the first 2-3 years at the beginning of organic farming and then reduced to a rate of $3-4Mg\;10a^{-1}$ after stabilization of organic matter content in soil with $30-50g\;10a^{-1}$. However, the continuous organic farming for 8-10 years resulted in accumulation of nutrients, especially of P, in soil probably due to the excessive amounts of compost applied. In conclusion, we suggest that the application rate and organic sources of compost should be decided on the basis of P content in soil by soil testing and thereafter the lack of soil N content for crop cultivation should be compensated by crop rotation with such as legumes. This might be an approach to the original meaning of organic farming as an environmental friendly agriculture.

Effect of IBDU Complex and Organic Fertilizers for Creeping Bentgrass in Golf Course (골프코스 Creeping Bentgrass에 대한 IBDU복합비료와 유기질비료류의 효과)

  • 함선규;김성태;김호준;이상기
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.3
    • /
    • pp.167-172
    • /
    • 1997
  • This experiment was carried out to study an effect of organic fertilizer, IBDU complex and humate on the growth of creeping bentgrass(penncross) and the change of soil chemical characteristics. Results obtained are summarized as follows :1.Content of a total nitrogen in soil was increased in more IBDU complex and organic fertilizer than humate plot. 2.Content of a organic matter in soil was increased in organic fertiliter and humate plot. 3.CEC in soil was improved a little in humate-granular plot. 4.The yield of dry weight and leaf color 'was increased in more organic fertilizer than humate plot. 5.Root length was the most effective in humate plot.

  • PDF

Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse (유기농 시설채소 재배지 토양의 물리적 특성변화)

  • Lee, Sang-Beom;Choi, Won-A;Hong, Seung-Gil;Park, Kwang-Lai;Lee, Cho-Rong;Kim, Seok-Cheol;An, Min-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.963-974
    • /
    • 2015
  • This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was $0.17{\pm}0.15{\sim}1.34{\pm}1.02$ in the topsoil, $0.55{\pm}0.34{\sim}1.15{\pm}0.62$ in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamic and typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$. Most measured soils have bulk densities between 1.0 and $1.6gcm^{-3}$. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.

The Measurement of Soil Conditioning Effects of Organic Materials (유기물의 토양 개량 효과 측정)

  • 주영규
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 1993
  • Much attention has been given recently to solve the environmental contamination in golf courses Changing to culture practice rather than chemical practice that depends on pesticides and fertilizers is a hot issue in golf courses or grasslands. Organic soil conditioners improve soil-plant envirormental conditions rich in physical properties. In this study, measuring systems to evaluate soil conditioning effects were set up for on-site purpose. After establishing the methodology for evaluating soil conditioner effects, 2 kinds of organic conditioners were rested for examination. The systems for the methodology included a set of simulating equipment for field capacity, an impact type soil column compactor, and an infiltration-percolation system. Test results using the systems showed bulk density and infiltration rate of mixed soil were decreased at highter rates of conditioner, but total porocities were increased. Increased porocities were most capillary pore space which has a positive effect on soil water potential. The systems and methodology in this study seem to have an efficiency to measure the effects of soil conditioner on site purpose.

  • PDF