• Title/Summary/Keyword: organic sludge

Search Result 845, Processing Time 0.027 seconds

The Status of Biogas as Renewable Energy (신재생에너지로서 바이오가스 현황)

  • Lim, Young-Kwan;Lee, Joung-Min;Jung, Choong-Sub
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-130
    • /
    • 2012
  • In these days, there has been increased focus on global warming and the exhaustion of resources recently caused by the heavy consumption of fossil resources. In order to resolve these problems, biomass is increasingly gaining international attention as a renewable energy source. Biogas derived from various biomass is environmental friendly alternative fuel for power generation, heating and vehicle fuel. Large amounts of sewage sludge, food waste and manure are generated from human activity, but these organic wastes contain high levels of organic matter and thus they are potential substrates for producing methane of biogas. The biogas contains 60% of highly concentrated methane, which is expected to be used effectively as energy. In this paper, we investigate the status of biogas in Korea as an alternative energy.

Relationship of Magnesium Source and MAP Crystallization Efficiency (마그네슘 공급원과 MAP 결정화 효율과의 관계)

  • Ahn, Johwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • Batch experiments were conducted to find out the effects of various types of magnesium compounds on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization. The phosphorus recovery from the centrate of anaerobic digested sludge was performed using magnesium chloride, magnesium hydroxide and magnesium oxide under different pH (7.5, 8.0 and 8.5) and Mg/P molar ratio (1.0, 1.5, 2.0, 2.5) conditions. The phosphorus recovery rate increased with increasing pH and Mg/P molar ratio in all magnesium compounds. At pH 7.5, magnesium oxide showed the highest phosphorus recovery rate, followed by magnesium hydroxide and magnesium chloride. However, at pH 8.5, more than 90% of phosphorus recovery rate was obtained in all Mg/p molar ratios. Thus, it is expected that magnesium hydroxide and magnesium oxide are able to replace magnesium chloride as a magnesium source in terms of phosphorus recovery efficiency and cost.

Research on Improving Drying Technology For Sewage Waste Using Direct Flotation Using Heat Storage Media (축열메디아 활용 직접부상방식을 이용한 하수찌꺼기의 건조기술 향상에 관한 연구)

  • Sung-Il Noh;Ung-Yong Kim;Sung-Gyun Jo;Hyun-Gon Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.5-11
    • /
    • 2023
  • This study was conducted to improve energy efficiency and problems such as clumping and fouling in the glue zone that occur in the moisture content range of 40 to 60% when sewage dehydration residue is directly fed into the dryer. The temperature of the hot air is low at 270~300℃, and the paddle-type flotation method and dehydrated residue are applied to the circulated heat storage media to increase the contact area with the hot air, thereby reducing energy recovery and gas emissions. The water content of the dried residue is 2.7. ~7 .5%, the heat of evaporation of moisture was 608.0~690.6 kcal/kg·H2O, which confirmed an energy saving effect of about 8.8% compared to the heat of evaporation of moisture of 714.5 kcal/kg·H2O when no heat storage media was used.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Design and Operation Guideline (바이오가스 이용 기술지침 마련을 위한 연구(III) - 기술지침(안) 중심으로)

  • Moon, HeeSung;Bae, Jisu;Pack, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • As a guideline for desulfurization and dehumidification pretreatment facility for optimizing utilization of biogas, the $H_2S$ concentration is set at 150 % which can be treated with iron salts, dehumidification is the optimum value for generator operation, and the relative humidity applied at the utilization of biogas in EU is set at 60 %. We have set up the generator facility guidelines to optimize utilization of biogas. The appropriate amount of biogas should be at least 90 % of the total gas generation, and the capacity of generator facility should be set at 20~30 %. In order to equalize the pressure of the incoming gas the generator, a gas equalization tank should be installed and the generator room average temperature should be kept at $45^{\circ}C$ or less. Since the gas is not produced at a certain methane concentration in the digester, the efficiency is lowered. Therefore, it is required to install an air fuel ratio control system according to the change in methane concentration. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), investigate the facilities problem and propose design, operation guidelines such as pre-treatment facilities and generators.

Preliminary Study of Semi-continuous Liquid Recirculating Anaerobic Digestion for Source Separated Food Waste (음식물류 폐기물 처리를 위한 준 회분식 액순환 건식 혐기성 소화법에 대한 기초연구)

  • Cho, Chan-Hui;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the experiment was carried out to produce methane by applying Semi-Continuous Leachate Recirculation Anaerobic Digestion System fed with source separated food waste from school cafeteria. There were two systems and each system consisted of a bioreactor and a liquid tank. Each bioreactor had a screen near the bottom of the reactor. 2.5L of separated liquid was transferred to the liquid tank for 30min each day by using a tubing pump and the liquid from the liquid tank was pumped to the bioreactor at the upper of the bioreactor as soon as the transfer was ended. Through this circulation, the liquid having high concentration of VFAs was supplied to the top of bioreactor. At the beginning of the experiment, food waste/inoculum anaerobic sludge volume ratio was 2:8 that is 9g VS/L of OLR(Organic Loading Rate). Feeding was conducted every two weeks. Experimental results showed that the contents of moisture, combustible matter, ash were 65.91%, 32.73%, and 1.36%, respectively. Two different food waste loading were studied. The average organic loading rates were 3.51g VS/d for System A and 3.86g VS/d for System B, respectively. The average produced methane based on food waste fed to bioreactor were observed as $6.30m^3CH_4/kgVS{\cdot}d$ for system A and $4.94m^3CH_4/kgVS{\cdot}d$ for System B, respectively.

Continuous Mesophilic-Dry Anaerobic Digestion of Organic Solid Waste (유기성고형폐기물의 연속 중온 건식혐기성소화)

  • Oh, Sae-Eun;Lee, Mo-Kwon;Kim, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.341-345
    • /
    • 2009
  • Continuous dry anaerobic digestion of organic solid wastes (30% TS, Total Solids) comprised of food waste and paper was performed under mesophilic condition. During the operation, hydraulic retention time (HRT) was decreased as follows: 150 d, 100 d, 60 d, and 40 d, which corresponded to the solid loading rate of 2.0, 3.0, 5.0, and 7.5 kg TS/$m^3$/d, respectively. Volumetric biogas production rate ($m^3$/$m^3$/d) increased as HRT decreased, and the highest biogas production rate of 3.49${\pm}$0.31 $m^3$/$m^3$/d was achieved at 40 d of HRT. At this HRT, high volatile solids (VS) reduction of 76% was maintained, and methane production yield of 0.25 $m^3$/kg $TS_{added}$ was achieved, indicating 67.4% conversion of organic solid waste to bioenergy. The highest biogas production yield of 0.52 $m^3$/kg $TS_{added}$ was achieved at 100 d of HRT, but it did not change much with respect to HRT. For the ease feed pumping, some amount of digester sludge was recycled and mixed with fresh feed to decrease the solid content. Recirculation volume of 5Q was found to be the optimal in this experimental condition. Specific methanogenic activity (SMA) of microorganisms at mesophilic-dry condition was 2.66, 1.94, and 1.20 mL $CH_4$/g VS/d using acetate, butyrate, and propionate as a substrate, respectively.

Evaluation of Autoheated Thermophilic Aerobic Digestion Process for the Treatment of Pig Manure Wastewater (돈사폐수의 고온 호기성 소화공정 적용 타당성 평가)

  • Chung, Yoon-Jin;Cho, Jong-Bok;Lee, Jin-Yong;Lee, Jong-Hyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.103-114
    • /
    • 1995
  • Since autoheated thermophilic aerobic digestion (ATAD) process has various advantages for the treatment of high-strength organic wastewater, active research and field application has been applied in U.S.A. and Canada, recently and the interest in ATAD process has been elevated for treating high-strength organic wastewater efficiently in Korea. Therefore, various experiments were carried out to evaluate the feasibility of ATAD process for the treatment of pig manure wastewater. The results of this study showed possibility to reuse pig manure wastewater as wet fodder or liquid compost, since ATAD process led excellent stabilization on the basis of odor and putrefaction. However. digested sludge can not be provided as wet fodder to most of hog farms without changing dry feeder system into wet system and as liquid compost to hog farms not having their own grass land. Since the results showed that the increase of temperature in reactor was resulted not from energy by biological activity. but from mechanical mixing energy. the reactor investigated in this study was against the principle of ATAD process. Therefore. if pig manure wastewater treated by ATAD can not be utilized as wet fodder. it is not economical to adopt ATAD process only for the treatment of wastewater.

  • PDF

A comparison of the reproduction of two closely related species, tiger worm(Eisenia fetida) and red tiger worm(Eisenia andrei) when the organic sludge was suppied to them (유기성 슬러지 먹이에 대한 두 근연종인 줄지렁이(Eisenia fetida)와 붉은줄지렁이(Eisenia andrei)의 생식반응 비교)

  • Bae, Yoon-Hwan;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.27-33
    • /
    • 2021
  • CO I gene sequence analysis was applied to earthworms that had been used as test animals in toxicity test in Institute of Kyeongbook Agrochemicals and earthworms used as vermicomposting agents in the farm of Youngdong province to identify their species names. In terms of molecular species, the former was identified as Eisenia fetida and the latter was Eisenia andrei. Cocoons produced from Eisenia fetida was more than those from Eisenia andrei. And No. of adults developed from eggs of Eisenia fetida was more or less higher than those developed from eggs of Eisenia andrei. These results were contradictory to previous reports on two Eisenia spp.. When Eisenia fetida was crossed with Eisenia andrei, hybridized eggs were produced and adults were developed from those eggs, but cocoons and adults were much less than those from non-crossed Eisenia fetida or Eisenia andrei. This indicated that two Eisenia spp. were not distinctly different biological species because there was no complete 'reproductive isolation' between Eisenia fetida and Eisenia andrei. However, this also meant that Eisenia fetida and Eisenia andrei had already been on the tract of speciation.

Analysis of Temperature Effect on Activated Sludge Process at Cheong-Gye Cheon Sewage Treatment Plant (활성오니공법에 있어서 수온이 처리효율에 미치는 영향에 관한 분석 -청계천 하수종말처리장에 대하여-)

  • 이은경
    • Journal of Environmental Health Sciences
    • /
    • v.7 no.1
    • /
    • pp.9-20
    • /
    • 1981
  • This study was performed to determine the correlationship between temperature and overall removals of BOD, SS and to demonstrate the effect of temperature on treatment performance. These data for a period from February 1, 1977 to January 31, 1980 were obtained from the Cheong-Gye Cheon Sewage Treatment plant. The results of correlation and stepwise multiple regression analysis were as follows. 1) Secondary effluent BOD and SS showed negative correlationship with water temperature, with correlation coefficient of -0.1710, and -0.1654 respectively. 2) Correlation coefficient of BOD, SS removal rate and water temperature were 0.1823 and 0.0429 respectively. 3) Regresion equation for estimate of BOD removal rate was as follows $\widehat{Y}_1$ (BOD removal rate)=63.9994+0.5442X(water temperature). And BOD removal rate showed non significant change according to the water temperature. 4) Regression equation for estimate of SS removal rate was as follows $\widehat{Y}_2$ (SS removal rate)=61.6881+0.1514X(Water temperature). And SS removal rate showed non significant change according to the water temperature. 5) According to the Stepwise Multiple Regression analysis, water temperature ranked second order in the BOD removal rate estimation and the equation was as follows $\widehat{Y}_1$ (BOD removal rate)=69.7398+0.2665 $X_1$ (Primary effluent BOD)+0.3562 $X_2$ (Water temperature)-0.0122 $X_3(Flow)+4413.271X_4$ (Organic Loading).

  • PDF

A Study on Anaerobic Sewage Treatment Using a Fluidized Bed Reactor (유동상 반응조를 이용한 하수의 혐기성 처리에 관한 연구)

  • Ye, Hyoung-Young;Lee, Eun-Young;Bae, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.265-273
    • /
    • 2012
  • Anaerobic sewage treatment is drawing attentions due to high energy consumptions and sludge production associated with aerobic treatment. This study evaluates the treatment characteristics and energy balance of a fluidized bed reactor (FBR) for treating domestic sewage at $20^{\circ}C{\sim}25^{\circ}C$ for 245 days. Sewage fed to the FBR was a primary clarifier effluent of a domestic sewage treatment plant with COD of 99-301 mg/L and $BOD_{5}$ of 37-149 mg/L. Effluent $SBOD_{5}$ and its removal efficiency at HRT of 1~3 h were 6~15 mg/L and 73.4~85.5%, respectively, achieving high removal efficiency for soluble organic substances even at short HRTs. COD removal efficiency and its effluent concentration were 53.8~75.9% and 51~83 mg/L, respectively. The energy production potential from gaseous methane was 0.009-0.028 kWh/$m^{3}$, which satisfies the energy required for the FBR operation.