• Title/Summary/Keyword: organic pollution load

Search Result 67, Processing Time 0.026 seconds

Reduction of Organic Sludge using High Efficiency Aeration System(HEAS) (고효율 포기 시스템을 이용한 유기성 슬러지의 감량화)

  • Oh, Sea-Bae;Lee, Sang-Houck
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.221-227
    • /
    • 2012
  • In Korea, ocean dumping has been widely used as the ultimate disposal of sewage sludge. However, ocean dumping of food wasted and sewage sludge from 2013 is expected to legally restricted as London convention on marine pollution prevention has been effective in 2009. This research aims to examine the effect of HEAS in treating the environmental pollution load caused by organic high concentrated sludge. Thus, onsite laboratory scale treatability test using HEAS was adopted to treat the high concentrated organic sludge from sewage and industrial wastewater treatment plant. The research results showed that the HEAS is useful to reduce the environmental pollution caused by organic high concentrated sludge. Specific results are as follows. 1. The organic removal after the sludge digestion using the high efficiency aeration system was 55.2-85.8%. Although these results were lower than those from the general sewage treatment, the high efficiency aeration system could be evaluated as efficient, considering the object sludge contained the industrial waster water. 2. The average removal efficiency was about 25.2%. 3. It was revealed that sludge digestion by the high efficiency aeration system could effectively contribute to the sludge treatment cost. Especially, the high efficiency aeration system is more applicable to the onsite treatment of small sewage and wastewater treatment plant that contains high solid content sludge, industrial wastewater sludge, high fixed solid sludge.

Improvement of Channel Water Quality Module in SWAT (SWAT 모형의 하도 수질 모듈의 개선)

  • Kim, Nam-Won;Shin, Ah-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.902-909
    • /
    • 2009
  • With various reservoirs, dams and reduction of water velocity in downstream, rivers in Korea often have characteristics of accumulation of pollutants. Therefore, the main focus of water quality modeling in Korea needs to be shifted from DO to algae and organic matter. Moreover the structures of water quality models should be modified to have capability of simulating BOD which is a key factor of total water pollution load management in Korea as laboratory experiment BOD (Bottle $BOD_5$). In the SWAT model which is one of the widely used water quality models in Korea, the channel water quality module is using main algorithm of the QUAL2E model which has limitations in simulating algae, organic matter and Bottle BOD5 etc. To overcome this hindrance, in this study, the improved channel water quality module of the SWAT model (Q-SWAT) was proposed by linking the algorithms of the QUAL-NIER model which was developed based on the QUAL2E model to the SWAT model. The algorithms estimating the increase of internal organic matter by fractionization algal metabolism process and calculating Bottle $BOD_5$ were added and the results of proposed model were compared to those of the original SWAT model. The results of comparison test are showing that more accurate BOD values can be obtained with the Q-SWAT model and it is anticipated that the Q-SWAT model can be used as an effective tool of decision support through the water quality simulation and long term pollution source analysis.

Evaluation of Discharge-Water Quality Characteristics and River Grade Classification of Jinwi River Unit Basin (진위천 단위유역의 유량-수질 특성 및 하천 등급화 평가)

  • Cho, Yong-Chul;Choi, Jin-Woo;Noh, Changwan;Kwon, Phil-Sang;Kim, Sang-hun;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.704-716
    • /
    • 2018
  • The aim of this study is to examine the characteristics analysis of the discharge and water quality based on TPLMS (Total Pollution Load Management System) in the Jinwi River unit basin, and to propose a management plan by selecting the point that needs improvement of water quality in order to achieve the target water quality. We evaluated the discharge and water quality characteristics, statistical analysis, daily delivery load and daily delivery density, grade classification, for 14 total pollution load site's from 2014 to 2016 year in Jinwi river unit basin. The average discharge of Jinwi river unit basin is $22.411m^3/s$ and discharge of Hwangguji River is 32.8% and the water quality characteristics along the tributary river were clarified spatially. As the result, it was analyzed that Seongeun River is an indirect indicator of organic pollutants, Gwanri River is a seasonal factor, Osan River and Hwangguji River both affect water quality. Estimation of delivered pollutant loads at the HG-3 site was 6,470.4 BOD kg/day, 6,846.7 TN kg/day and delivered pollutant loads density increased to $220.9BOD\;kg/day/km^2$, $22.4TP\;kg/day/km^2$ at the HG-4 site. This result demonstrates that the total pollution load site needed to improve water quality of the Jinwi River unit basin was HG-3 site.

A Study on the Estimation of Water Pollutants Reduction Ratio in Livestock Manure Fertilization (가축분뇨 자원화 처리시 수질오염물질 삭감율 산정 연구)

  • Oa, Seong Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.722-727
    • /
    • 2017
  • Livestock manure is known to be the main cause of non-point pollution in agricultural areas. The pollutant reduction ratio of livestock manure recycling to fertilizers was measured in order to analyze the effect on the water quality of the Total Maximum Daily Load (TMDL) system in Korea. The reduction ratio has been applied by theoretical consideration without a survey, and there is no value for Total Organic Carbon (TOC) newly introducing any organic items. The reduction ratio of each pollutant from this study was revealed as follows: TOC, BOD, T-N and T-P were 0.34, 0.60, 0.37, and 0.42 for individual farm and 0.38, 0.61, 0.45 and 0.44 for entrustment facilities, respectively. The reduction ratio of individual farm was surveyed as TOC 0.63, BOD 0.62, T-N 0.42 and T-P 0.32 for liquid fertilizer, and TOC 0.30, BOD 0.64, T-N 0.40 and T-P 0.48 for compost. The total reduction ratio was derived by multiplying the ratio for liquid fertilizer and compost by the respective load. Compared to the pollutant reduction ratio of the individual farm with entrustment facilities marking the higher in liquid fertilizer and the lower in compost. Through this study, we found the difference of pollutant reduction ratio between a livestock manure recycling process and facilities. Although phosphorus is known as a preservative matter, the treatment efficiency of T-P is analyzed to decrease by chemical precipitation.

The Ecological Modeling for Estimation of Carrying Capacity in Masan Bay in 2002 summer (2002년 하계 마산만의 수질개선을 위한 환경용량산정 모델링)

  • Hong, Sok Jin;Lee, Won Chan;Park, Sung Eun;Jung, Rea Hong;Cho, Yoon Sik;Park, Jong Su;Kim, Dong Myung
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.57-69
    • /
    • 2007
  • This study focused on coastal water quality response to land-based and sediment pollution loads and estimation of the carrying capacity in Masan Bay using an ecological model with the data in summer of 2002. A residual current was simulated to have a slightly complicated pattern with ranging from 0.1 to 1.5 cm/s. In Masan Bay, pollutant materials cannot flow from the inner to the outer bay easily because of residual currents flow southward at surface and northward at the bottom. The simulation results of COD distribution showed high concentrations over 3 mg/L in the inner part of Masan Bay related pollutant discharge. For improvement seawater quality grade I in Masan Bay, it is necessary to reduce the organic and inorganic loads from point sources by more than 80%. For improvement seawater quality grade II, it is necessary to reduce the organic and inorganic loads from point sources by more than 50% and ameliorate severe polluted sediment. The carrying capacity for COD is 2.32 ton/day and 7.16 ton/day for each grade.

  • PDF

Current Status of Refractory Dissolved Organic Carbon in the Nakdong River Basin (낙동강유역 난분해성 용존 유기탄소 배출 현황 분석)

  • Lee, Jeonghoon;Kim, Jungsun;Lee, Jae Kwan;Kang, Limseok;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.538-550
    • /
    • 2012
  • This study suggests a general methodology which is designed for assessing RDOC behavior at the catchment scale by coupling properly a series of steam flow and water quality simulation models and actual monitoring data set. The modified TANK model in which a river routing function is incorporated to the conventional one is applied to simulate the long-term daily stream flow data, and the simulated stream flow data is combined with the 7-parameter log-linear model coupled to the minimum variance unbiased estimator to simulate the long-term daily water quality (BOD, COD and TOC) loads. Finally, the regression analysis between the usually monitored water quality data (BOD, COD and TOC) and RDOC is combined with the simulated water quality data to manifest the spatio-temporal variability of RDOC flux behavior at the Korean TMDL catchment scale.

Analysis on the Actual Conditions of Wastewater Treatment Facilities in Chungcheongnam-do Province Industrial Complexes (충청남도 산업단지의 오·폐수처리실태 분석)

  • Lim, Bong-Su;Kim, Do-Young;Yi, Sang-Jin;Oh, Hye-Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.850-862
    • /
    • 2007
  • This study was carried out to survey the actual conditions of wastewater treatment facilities to obtain basic data for the management of wastewater from industrial complexes in Chungcheongnam-do province. Wastewater production flow per site area by watersheds was $49.2m^3/km^2/d$ for Sapgyoho, $8.1m^3/km^2/d$ for Anseongcheon, $5.7m^3/km^2/d$ for Seohae, and $2.9m^3/km^2/d$ for Geumgang. Sapgyoho showed 75% of the total production flow, which was the highest value, Geumgang showed 4% of total flow, which was the lowest value. Average total extra rate as production flow/capacity flow in the wastewater treatment facilities for industrial complex is 49%. Considering by watersheds, the extra rates of Seohae, Geumgang, Anseongcheon, and Sapgyoho, are 73%, 65%, 62%, and 33% respectively. This means that the design of capacity flow in wastewater treatment facilities was too large. Effluent concentration of wastewater treatment facilities did not exceed discharge limit mostly. The removal efficiency rate for water quality item was 90% in BOD, 70% in COD, 80% in SS, 30 to 80% in TN, and 20 to 90% in TP, so the organic removal was good, but the nutrient removal was low and interval of variation was high. The removal efficiency rate of the agricultural was industrial complexes is lower than the national and local complexes. The construction cost of the wastewater treatment facilities in Chungcheongnam-do was $1,756Won\;per\;m^3$, treatment cost was $189Won\;per\;m^3$, and they were about two times and 1.2 times higher than the nation-wide cost, respectively. The treatment cost consists of 39% for man power, 21% for chemical, 16% for power, 11% for sludge treatment, and 13% for others.

Trace Metal Distribution and Ecological Risk Assessment in Marine Sediments from the Southeast Coastal Areas of Korea (남동해 연안 퇴적물 내 미량금속 분포 및 생태위해도 평가)

  • Dong-Woon Hwang;Minkyu Choi;Jae-Hyun Lim;In-Seok Lee;Garam Lee;Sujin Na
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.438-448
    • /
    • 2023
  • The concentrations of trace metals and organic matters in marine sediments collected from southeast Korean coastal areas were investigated. The primary purpose of this study was to evaluate the contamination status, spatial distribution and potential ecological risks associated with the physiochemical composition in the studied areas. We found that the concentrations of trace metals in marine sediments were as follows: Fe > Mn > Zn > Cr > Pb > Cu > As > Cd > Hg. According to the sediment quality guidelines (SQGs) of Korea, concentrations of Zn, Cr, Cu and Cd at all sampling sites were below threshold effect levels (TEL). However, concentrations of As, Hg, and Pb (i.e., at the 94-98% of sampling sites), were below the TEL. In addition, concentration factors (CF) in the surveyed area were found to be associated with low ecological risks, whereas As, Hg, and Cu showed moderate to high risk levels in some inner parts of the studied bays. Finally, the pollution load index (PLI) and ecological risk index (ERI) of the elucidated metals were linked to moderate ecological risk, pointing to the possibility of being deleterious to some benthic organisms.

CHARACTERIZATION OF NONPOINT SOURCES FROM URBAN RUNOFF

  • Park, Jae-Young;Jo, Young-Min;Oh, Jong-Min
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2000
  • This work was completed in partial fulfillment of an on-going research ot descover the effective management of urban nonpoint sources. The current data was obtained from the area of Shingal, Kyunni-do. The investigation was are predominant soures of storm-runoff load and drainage. As a result of the investigation, the road was found to be most seriously contaminated and a significant potential source deteriorating the quality of streams and lakes in the vicinity of the town. Thus, in could be concluded that an effective and systematic cleaning technique must be developed as soon as possible and be frequently applied to the road.

  • PDF

Water quality management by bio-purification of bivalve, Mytilus galloprovincialis, in Masan Bay (이매패의 생물정화 기작을 이용한 마산만의 수질개선방안)

  • Hong, Sok Jin;Eom, Ki Hyuk;Jang, Ju Hyung;Park, Jong Su;Kim, Dong Myung;Kwon, Jung No
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.71-84
    • /
    • 2007
  • Masan Bay is a representative semi-closed bay acted as a sedimentation reservoir with a slow current velocity and a poor water circulation in Korea. The pollutants from terrestrial sources into the Masan Bay have apparently environmental pollution problems, such as eutrophication, red tied, and hypoxia. In this study, An ecological modeling work was performed to estimate the material circulation including the growth of bivalve in ecosystem. Furthermore, the effect of water purification was calculated by filter feeding bivalve to particulate organic matter just like COD and phytoplankton. And Water quality management strategy by bio-purification of bivalve is derived through selection of location, quantification of bivalve aquaculture farm. The results showed that the optimum location for bivalve farming is where phytoplankton accumulation by physical processes is maximized and the optimum density and area of bivalve are 35 individuals $m^{-3}$ and ca. 500 hectare, respectively. When assuming conditions for the optimum growth of bivalve, COD could decrease by up to 18% even without other reduction of pollution loads.

  • PDF