• Title/Summary/Keyword: organic molecules

Search Result 529, Processing Time 0.027 seconds

Fundamental Study on the Properties of Organic Molecules for the Preparation of Molecular Electronic Device. (분자전자기구의 제작을 위한 유기물의 성질에 관한 기호 연구)

  • 신동명
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.19-20
    • /
    • 1989
  • The Orientation and distribution of stilbenes and azobenzenes in bilayer membranes are disoussed. The micropolarity that the organic molecules experience is rather polar.

  • PDF

Bioactive Marine Natural Products

  • Son, Byeng-Wha
    • Korean Journal of Pharmacognosy
    • /
    • v.21 no.1
    • /
    • pp.1-48
    • /
    • 1990
  • Marine organisms have proven to be rich sources of interesting organic molecules. A great number of compounds with diverse structural features and interesting biological activities have been isolated. Recent studies on secondary metabolites of marine organisms are discussed with a focus on a variety of biological activities and marine natural product literatures are also reviewed.

  • PDF

Self-Assembly of Pentacene Molecules on Epitaxial Graphene

  • Jung, Woo-Sung;Lee, Jun-Hae;Ahn, Sung-Joon;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.230-230
    • /
    • 2012
  • Graphene have showed promising performance as electrodes of organic devices such as organic transistors, light-emitting diodes, and photovoltaic solar cells. In particular, among various organic materials of graphene-based organic devices, pentacene has been regarded as one of the promising organic material because of its high mobility, chemical stability. In the bottom-contact device configuration generally used as graphene based pentacene devices, the morphology of the organic semiconductors at the interface between a channel and electrode is crucial to efficient charge transport from the electrode to the channel. For the high quality morphology, understanding of initial stages of pentacene growth is essential. In this study, we investigate self-assembly of pentacene molecules on graphene formed on a 6H-SiC (0001) substrate by scanning tunneling microscopy. At sub-monolayer coverage, adsorption of pentacene molecules on epitaxial graphene is affected by $6{\times}6$ pattern originates from the underlying buffer layer. And the orientation of pentacene in the ordered structure is aligned with the zigzag direction of the edge structure of single layer graphene. As coverage increased, intermolecular interactions become stronger than molecule-substrate interaction. As a result, herringbone structures the consequence of higher intermolecular interaction are observed.

  • PDF

High-Performance Single-Crystal Organic Nanowire Field-Effect Transistors of Indolocarbazole Derivatives

  • Park, Gyeong-Seon;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.368-368
    • /
    • 2012
  • We report solution-processed, high-performance single-crystal organic nanowire transistors fabricated from a novel indolocarbazole (IC) derivative. The direct printing process was utilized to generate single-crystal organic nanowire arrays enabling the simultaneous synthesis, alignment and patterning of nanowires using molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. These new molecules are particularly suitable for p-channel organic field-effect transistors (OFETs) because of the high level of crystallinity usually found in IC derivatives. Selected area diffraction (SAED) and X-ray diffraction (XRD) experiments on these solution-processed nanowires showed high crystallinity. Transistors fabricated with these nanowires gave a hole mobility as high as 1.0 cm2V-1s-1 with nanowire arrays with the direct printing process.

  • PDF

Treatment Efficiency and Organic Matter Characterization of Wastewater through Activated Sludge Process and Advanced Wastewater Treatment Process (활성슬러지공정과 고도처리공정에 따른 하수처리수의 처리효율과 유기물 특성)

  • Hong, JiHea;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.807-813
    • /
    • 2004
  • Wastewater was treated by two different treatment processes; activated sludge process and advanced wastewater treatment process (KNR process) using lab-scale experiment. Two treated wastewater showed good treatment efficiency of organic matter removal, up to 90% removal. Nitrogen and phosphorus were not effectively removed though activated sludge process, while KNR process showed good removal efficiency of nitrogen and phosphorus; 56% nitrogen removal and 95% phosphorus removal. KNR process showed better removal efficiency of organic matter, nitrogen, and phosphorus compared to activated sludge process. Organic matter characterization was tracked though measurement of UV scan, SUVA, and XAD fractionation. Treated wastewater showed higher SUVA value than wastewater influent, indicting less aromatic characteristic of organic matter. XAD fractionation showed hydrophilic fraction decreased though wastewater treatment, suggesting microbes preferentially digest hydrophilic and aliphatic molecules rather than hydrophobic and aromatic molecules of organic matter.

Photophysical Properties of Guest Molecules Confined in Nanopores (미세 기공의 한정된 공간에 의한 게스트 분자의 광학 특성 변화 고찰)

  • Park, Suhyeon;Kim, Juyeong
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.477-483
    • /
    • 2020
  • Metal-organic frameworks (MOFs) are of significant interest because of their high porosity, which facilitates their utilization in gas storage and catalysis. To enhance their current properties in these applications, it is necessary to elucidate the interactions between molecules in a confined environment that differ from those in bulk conditions. Herein, we study the confined molecular interaction by investigating the solvent-dependent photophysical properties of two different-sized molecules inside MOF-5. Ruthenium tris-bipyridine (Rubpy) and coumarin 153 (C153) are encapsulated in MOF-5. Rubpy with MOF-5 (Rubpy@MOF) is prepared by building MOF-5 around it, resulting in limited space for solvent molecules in the pores. The smaller C153 is encapsulated in the preformed MOF-5 (C153@MOF) by simply soaking the MOF in a concentrated C153 solution. C153@MOF permits more space for solvent molecules in the pore. Their characteristic absorption and emission spectra are examined to elucidate the confined molecular interactions. Rubpy@MOF and C153@MOF exhibit different spectral shifts compared to the guest molecules under bulk conditions. This discrepancy is attributed to the different micro-environments inside the pores, derived from confined host-guest interactions in the interplay of solvent molecules.

Recent Progress in the Development of Small Organic Molecules for White Organic Light Emitting Devices

  • Raja, Inam ul Haq;Jung, Se-Jin;Lee, So-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.91-106
    • /
    • 2008
  • Development of white light emitting materials has been an interesting area for scientists and scientists have developed many organic, polymer and inorganic materials for white electroluminescent devices. Among them, single component small molecules gave best results in terms of efficiency, simplicity of device fabrication, and CIE values. Therefore, this review covers detailed discussion about syntheses of small compounds used in white organic light emitting devices until 2007.

Optical study of environmental and light induced effects on 8-hydroxyquinoline derivative metal complex small molecules thin films

  • Shukla, Vivek Kumar;Datta, Debjit;Kumar, Satyendra
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.629-631
    • /
    • 2004
  • We report on the synthesis and film formation on a variety of small molecules such as $Alq_3$, $Znq_2$, and $Inq_3$, used as light emitting material in organic light emitting diodes (OLEDs) . The organic materials are usually susceptible to environmental aging and photo-oxidation, which influences their viability for commercial utility. Here, we examine the effects of oxygen and light on these organic materials to enhance the efficiency and lifetime of OLEDs. Optical techniques - ellipsometry, photoluminescence and infrared spectroscopies- have been used to study of environmental and light induced effects on 8-hydroxyquinoline derivative metal complex small molecules thin films

  • PDF

Complex organic molecules detected in twelve high mass star forming regions with ALMA

  • Baek, Giseon;Lee, Jeong-Eun;Hirota, Tomoya;Kim, Kee-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.37.3-38
    • /
    • 2021
  • One of the key questions on star formation is how the organic molecules are synthesized and delivered to the planets and comets since they are the building blocks of prebiotic molecules such as amino acid, which is thought to contribute to bringing life on Earth. Recent astrochemical models and experiments have explained that complex organic molecules (COMs; molecules composed of six or more atoms) are produced on the dust grain mantles in cold and dense gas in prestellar cores. However, the chemical networks and the roles of physical conditions on chemistry are not still understood well. To address this question, hot (> 100 K) cores in high mass young stellar objects (M > 8 Msun) are great laboratories due to their strong emissions and larger samples than those of low-mass counterparts. In addition, CH3OH masers, which have been mostly found in high mass star forming regions, can provide constraints due to their very unique emerging mechanisms. We investigate twelve high mass star forming regions in ALMA band 6 observation. They are associated with 44/95 GHz Class I and 6.7 GHz Class II CH3OH masers, implying that the active accretion processes are ongoing. For these previously unresolved regions, 66 continuum peaks are detected. Among them, we found 28 cores emitting COMs and specified 10 cores associated with 6.7 GHz Class II CH3OH masers. The chemical diversity of COMs is found in cores in terms of richness and complexity; we identified up to 19 COMs including oxygen- and nitrogen-bearing molecules and their isotopologues in a core. Oxygen-bearing molecules appear to be abundant and more complex than nitrogen-bearing species. On the other hand, the COMs detection rate steeply grows with the gas column density, which can be attributed to the effective COMs formation in dense cores.

  • PDF

Photocatalytic Membrane for Contaminants Degradation: A Review (오염물질 분해를 위한 광촉매 분리막: 총설)

  • Kahkahni, Rabea;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Growing industrialization leads to severe water pollution. Organic effluents from pharmaceuticals and textile industries released in wastewater adversely affect the environment and human health. Presence of antibiotics used for antibacterial treatment in wastewater leads to the growth of drug resistance bacteria, which is very harmful for human being. Various small organic molecules are used for the preparation of organic dye molecules in the textile industries. These molecules hardly degrade, which is present in the wastewater effluents from printing and dyeing industries. In order to address these problems, photoactive catalyst is embedded in the membrane and wastewater are passed through it. Through this process, organic molecules are photodegraded and at the same time, the degraded compounds are separated by the membrane. Titanium dioxide (TiO2) is a semiconductor which behave as excellent photocatalyst. Photocatalytic ability is enhanced by the making its composite with other transition metal oxide and incorporated into polymeric membrane. In this review, the degradation of dye and drug molecules by photocatalytic membrane are discussed.