DOI QR코드

DOI QR Code

Photophysical Properties of Guest Molecules Confined in Nanopores

미세 기공의 한정된 공간에 의한 게스트 분자의 광학 특성 변화 고찰

  • Park, Suhyeon (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Kim, Juyeong (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
  • Received : 2020.12.04
  • Accepted : 2020.12.16
  • Published : 2020.12.28

Abstract

Metal-organic frameworks (MOFs) are of significant interest because of their high porosity, which facilitates their utilization in gas storage and catalysis. To enhance their current properties in these applications, it is necessary to elucidate the interactions between molecules in a confined environment that differ from those in bulk conditions. Herein, we study the confined molecular interaction by investigating the solvent-dependent photophysical properties of two different-sized molecules inside MOF-5. Ruthenium tris-bipyridine (Rubpy) and coumarin 153 (C153) are encapsulated in MOF-5. Rubpy with MOF-5 (Rubpy@MOF) is prepared by building MOF-5 around it, resulting in limited space for solvent molecules in the pores. The smaller C153 is encapsulated in the preformed MOF-5 (C153@MOF) by simply soaking the MOF in a concentrated C153 solution. C153@MOF permits more space for solvent molecules in the pore. Their characteristic absorption and emission spectra are examined to elucidate the confined molecular interactions. Rubpy@MOF and C153@MOF exhibit different spectral shifts compared to the guest molecules under bulk conditions. This discrepancy is attributed to the different micro-environments inside the pores, derived from confined host-guest interactions in the interplay of solvent molecules.

Keywords

References

  1. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe and O. M. Yaghi: Acc. Chem. Res., 34 (2001) 319. https://doi.org/10.1021/ar000034b
  2. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O. M. Yaghi: Science, 295 (2002) 469. https://doi.org/10.1126/science.1067208
  3. O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim: Nature, 423 (2003) 705. https://doi.org/10.1038/nature01650
  4. J. L. C. Rowsell and O. M. Yaghi: Microporous Mesoporous Mater., 73 (2004) 3. https://doi.org/10.1016/j.micromeso.2004.03.034
  5. D. Hexiang, S. Gunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J. F. Stoddart and O. M. Yaghi: Science, 336 (2012) 1018. https://doi.org/10.1126/science.1220131
  6. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae and J. R. Long: Chem. Rev., 112 (2012) 724. https://doi.org/10.1021/cr2003272
  7. M. P. Suh, H. J. Park, T. K. Prasad and D. W. Lim: Chem. Rev., 112 (2012) 782. https://doi.org/10.1021/cr200274s
  8. J. R. Li, J. Sculley and H. C. Zhou: Chem. Rev., 112 (2012) 869. https://doi.org/10.1021/cr200190s
  9. A. U. Czaja, N. Trukhan and U. Muller: Chem. Soc. Rev., 38 (2009) 1284. https://doi.org/10.1039/b804680h
  10. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp: Chem. Soc. Rev., 38 (2009) 1450. https://doi.org/10.1039/b807080f
  11. A. M. Shultz, O. K. Farha, J. T. Hupp and S. T. Nguyen: J. Am. Chem. Soc., 131 (2009) 4204. https://doi.org/10.1021/ja900203f
  12. S. Amirjalayer and R. Schmid: Microporous Mesoporous Mater., 125 (2009) 90. https://doi.org/10.1016/j.micromeso.2009.02.006
  13. S. Amirjalayer, M. Tafipolsky and R. Schmid: Angew. Chem. Int. Ed., 46 (2007) 463. https://doi.org/10.1002/anie.200601746
  14. D. C. Ford, D. Dubbeldam, R. Q. Snurr, V. Kunzel, M. Wehring, F. Stallmach, J. Karger and U. Muller: J. Phys. Chem. Lett., 3 (2012) 930. https://doi.org/10.1021/jz300141n
  15. F. Stallmach, S. Groger, V. Kunzel, J. Karger, O. M. Yaghi, M. Hesse and U. Muller: Angew. Chem. Int. Ed., 45 (2006) 2123. https://doi.org/10.1002/anie.200502553
  16. S. Han, Y. Wei, C. Valente, I. Lagzi, J. J. Gassensmith, A. Coskun, J. F. Stoddart and B. A. Grzybowski: J. Am. Chem. Soc., 132 (2010) 16358. https://doi.org/10.1021/ja1074322
  17. A. S. Munch, J. Seidel, A. Obst, E. Weber and F. O. R. L. Mertens: Chem. Eur. J., 17 (2011) 10958. https://doi.org/10.1002/chem.201100642
  18. E. M. Kober, B. P. Sullivan and T. J. Meyer: Inorg. Chem., 23 (1984) 2098. https://doi.org/10.1021/ic00182a023
  19. M. L. Horng, J. A. Gardecki, A. Papazyan and M. Maroncelli: J. Phys. Chem., 99 (1995) 17311. https://doi.org/10.1021/j100048a004
  20. J. Kim, H. P. Yennawar and B. J. Lear: Dalton Trans., 42 (2013) 15656. https://doi.org/10.1039/c3dt52094c
  21. J. Kim, M. R. Dolgos and B. J. Lear: Cryst. Growth Des., 15 (2015) 4781. https://doi.org/10.1021/acs.cgd.5b00411