• Title/Summary/Keyword: organic molecules

Search Result 529, Processing Time 0.028 seconds

Porous Silicon Microcavity Sensors for the Detection of Volatile Organic Compounds (휘발성 유기화합물 탐지용 다공성 실리콘 Microcavity 센서)

  • Park, Cheol Young
    • Journal of Integrative Natural Science
    • /
    • v.2 no.3
    • /
    • pp.211-214
    • /
    • 2009
  • A new porous silicon (PSi) microcavity sensor for the detection of volatile organic compounds (VOCs) was developed. PSi microcavity sensor exhibiting unique reflectivity was successfully obtained by an electrochemical etching of silicon wafer. When PSi was fabricated into a structure consisting of two high reflectivity muktilayer mirrors separated by an active layer, a microcavity was formed. This PSi microcavity is very sensitive structures. Reflection spectrum of PSi microcavity indicated that the full-width at half-maximum (FWHM) was of 10 nm and much narrower than that of fluorescent organic molecules or quantum dot. The detection of volatile organic compounds (VOCs) using PSi microcavity was achieved. When the vapor of VOCs condensed in the nanopores, the refractive indices of entire particle increased. When PSi microcavity was exposed to acetone, ether, and toluene, PSi microcavity in reflectivity was red shifted by 28 nm, 33 nm, and 20 nm for 2 sec, respectively.

  • PDF

The Coordination of Pyridyl-N to Pentacyanoferrate for the Electrochemical Detecting Small Organic Molecules

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.595-599
    • /
    • 2013
  • The coordination of pyridyl-N to pentacyanoferrate for the detection of small organic antigens in solution is presented. The unique contribution of this paper is the direct conjugation of pyridyl-N in small organic antigens to pentacyanoferrate. Pentacyanoferrate is promising as an electrochemical label owing to its good electro-chemical properties, which can be utilized to generate an electrical signal in homogeneous electrochemical immunoassays. The facilely synthesized pyridyl-N to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. Hippuric acid (HA) has been detected competitively on the interaction of free HA and pentacyanoferrate-(4-aminomethylpyridine-hippuric acid) (Fe-HA) to its antibody, with the detection limit of 0.50 ${\mu}g\;mL^{-1}$. While pentacyanoferrate-based immunoassay is in its simplicity and infancy, the proposed immunoassay offers attractive opportunities for developing pyridyl-N-based the electrochemical detection of small organic antigens in the health care area.

Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes

  • Ngo, Ho-Phuong-Thuy;Nguyen, Diem Quynh;Park, Hyunjae;Park, Yoon Sik;Kwak, Kiwoong;Kim, Taejoon;Lee, Jang Ho;Cho, Kyoung Sang;Kang, Lin-Woo
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.439-446
    • /
    • 2022
  • Pyridoxal 5'-phosphate (PLP)-dependent enzymes are ubiquitous, catalyzing various biochemical reactions of approximately 4% of all classified enzymatic activities. They transform amines and amino acids into important metabolites or signaling molecules and are important drug targets in many diseases. In the crystal structures of PLP-dependent enzymes, organic cofactor PLP showed diverse conformations depending on the catalytic step. The conformational change of PLP is essential in the catalytic mechanism. In the study, we review the sophisticated catalytic mechanism of PLP, especially in transaldimination reactions. Most drugs targeting PLP-dependent enzymes make a covalent bond to PLP with the transaldimination reaction. A detailed understanding of organic cofactor PLP will help develop a new drug against PLP-dependent enzymes.

Molecular-scale Structure of Pentacene at Functionalized Electronic Interfaces

  • Seo, Soon-Joo;Peng, Guowen;Mavrikakis, Manos;Ruther, Rose;Hamers, Robert J.;Evans, Paul G.;Kang, Hee-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.299-299
    • /
    • 2011
  • A dipolar interlayer can cause dramatic changes in the device characteristics of organic field-effect transistors (OFETs) or photovoltaics. A shift in the threshold voltage, for example, has been observed in an OFET where the organic semiconductor active layer is deposited on SiO2 modified with a dipolar monolayer. Dipolar molecules can similarly be used to change the current-voltage characteristics of organic-inorganic heterojunctions. We have conducted a series of experiments in which different molecular linkages are placed between a pentacene thin film and a silicon substrate. Interface modifications with different linkages allow us to predict and examine the nature of tunneling through pentacene on modified Si surfaces with different dipole moment. The molecular-scale structure and the tunneling properties of pentacene thin films on modified Si (001) with nitrobenzene and styrene were examined using scanning tunneling spectroscopy. Electronic interfaces using organic surface dipoles can be used to control the band lineups of a semiconductor at organic/inorganic interfaces. Our results can provide insights into the charge transport characteristics of organic thin films at electronic interfaces.

  • PDF

UV induced protonation of ammonia

  • Moon, Eui-Seong;Lee, Du-Hyeong;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.394-394
    • /
    • 2010
  • Ammonium ion (${NH_4}^+$) was suggested as the origin of interstellar $6.85\;{\mu}m$ band. Early study, in which organic molecule and water ice film mixtures were photolyzed so that organic acids could be produced, explained the generation of ${NH_4}^+$ from the reaction of photogenerated organic acid and ammonia ($NH_3$). However, the observed abundance of organic acids or their counter-anions are not so high in interstellar ice and not enough to protonate $NH_3$ into ${NH_4}^+$ in the observed level. Because of the shortage in photogenerated organic acids, the candidate of acid which protonates $NH_3$ should be modified. Here, we prepare $NH_3/H_2O$ binary mixtures and photolyze them with vacuum ultraviolet (VUV, peak at 10.6 and 10.0 eV). We find the ammonium ion (${NH_4}^+$) from photolyzed mixture by using low energy sputtering (LES) and reflection absorption IR spectroscopy (RAIRS). As a hydronium ($H_3O^+$) can be produced by UV irradiation and protonate bases, ${NH_4}^+$ may be formed from the reaction of photogenerated $H_3O^+$ and $NH_3$. We show the generation of ${NH_4}^+$ without any kind of organic molecules or acids, and it may explain the relatively high abundance of ${NH_4}^+$ compared to the counter-anions or organic acids in interstellar ice.

  • PDF