• Title/Summary/Keyword: organic matter degradation

Search Result 193, Processing Time 0.024 seconds

Degradation of [$^{14}C$]Carbofuran in Soils and Characterization of its Nonextractable Residues (토양중 [$^{14}C$Carbofuran의 분해 및 비추출성 잔류분의 특성)

  • Park, Chang-Kyu;Lee, Young-Deuk
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.263-268
    • /
    • 1995
  • A study was undertaken to compare degradation patterns of carbofuran in soils between submerged and upland moisture conditions [$3-^{14}C$]Carbofuran was treated in each soils at the rate of 1.0 mg/kg (87.8 kBq $^{14}C/50g$ soil) and the time-course analysis for distribution of radioactivity and degradation products were conducted. Differences in the pathway and rate of carbofuran degradation in soils were observed between submerged and upland moisture conditiona major degradation being hydrolysis at 7-C position and oxidation at 3-C position, respectively. Carbofuran showed less persistence in soils of higher moisture contents A significant portion, $24{\sim}39%$ of the total radioactivity, resided in soils as nonextractable residues at 60 days after treatment The nonextractable radioactivity was mainly located in soil organic matter, fulvic acid, humic acid and humin factions Gel filtration chromatography confirmed the incorporation of carbofuran and its degradation products into the organic matter.

  • PDF

The Characteristics of Organic Degradation and Ammonia Volatilization in the Liquid Composting of Pig Slurry

  • Kim, Chang-Gyu;Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.325-335
    • /
    • 2017
  • This study was carried out for 30 days in aeration type and agitation type reactor to characterize organic matter decomposition and ammonia volatilization during the liquid composting of pig slurry, and organic matter and nitrogen removal rate through mass balance analysis was analyzed. In the aeration type reactor, the pH increased from 7.0 to 9.13, and TS 34.5%, VS 33.4%, $BOD_5$ 71.2%, $COD_{Cr}$ 62.3% and TOC 83.2% were removed. In addition, 44.6% of TN and 65.0% of ${NH_4}^+-N$ were removed. In the agitation type reactor, the pH increased from 7.0 to 8.10, and the removal rates of TS 0.9%, VS 0.5%, $COD_{Cr}$ 27.5%, $BOD_5$ 28.9% and TOC 41.3% were obtained. And TN and ${NH_4}^+-N$ showed removal rate of 25.3% and 29.2%, respectively. The first order kinetics constant related to $BOD_5$ degradation was $-0.039day^{-1}$ for aerobic liquid composting and $-0.013day^{-1}$ for agitated reactor. Nitrogen loss in aerobic liquid composting was about 2.3 times higher than that of agitated reactor, whereas FAN/TAN in aerobic liquid composting was about 7.9 times higher than that of agitation type reactor. Therefore, despite the low FAN/TAN in the agitation type reactor, the nitrogen loss rate was relatively high.

Adsorption and catalytic ozonation of aquatic organic compound by acid-treated granular activated carbon (산 처리한 활성탄을 이용한 수중 유기물의 흡착 및 오존 분해)

  • Nam, Yun-Seon;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.127-132
    • /
    • 2011
  • Humic substances is accounted for for the largest proportion in natural organic matter(NOM) and NOM is widely distributed in varying concentration in all aquatic and soil. They can affect water quality adversely in several ways by contributing undesirable color, complexing with metal and yielding metal concentrations exceeding normal solubility. Ozonation is one of the efficient treatments for degradation of humic substances which cause some problems in water treatment. Especially, the combination of ozone and granular activated carbon was applied to degradation humic acid in aquatic system. The aim of this work to test the available of acid-treated granular activated carbon as catalyst in the ozonation of humic acid.

  • PDF

Algal Contribution to the Occurrence of Refractory Organic Matter in Lake Paldang, South Korea: Inferred from Dual Stable Isotope (13C and 15N) Tracer Experiment (팔당호 난분해성 유기물에 대한 조류기원 유기물의 기여)

  • Lee, Yeonjung;Ha, Sun-Yong;Hur, Jin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.192-201
    • /
    • 2019
  • While a fairly large amount of organic matter is produced daily via phytoplankton photosynthesis in Lake Paldang, South Korea, knowledge of the role of algal-derived organic matter (OM) as a refractory OM source is not adequate. To understand the contribution of algal-derived OM to the refractory pool, biodegradation experiment and $KMnO_4$ oxidation experiment were conducted for 60 days using $^{13}C$ and $^{15}N$ labeled natural phytoplankton assemblage. The assemblage was collected from Lake Paldang on May 20, 2010. The photosynthetically produced total organic carbon ($TO^{13}C$), particulate organic carbon ($PO^{13}C$), and particulate nitrogen ($P^{15}N$) remained at 26%, 20%, and 17% of the initial concentrations, respectively, in the form of non-biodegradable organic matter. In addition, 12% and 38% of $PO^{13}C$ remained after $KMnO_4$ treatment on Day 0 and 60, respectively. These results indicate that photosynthetic products could be an important source of refractory organic matter after microbial degradation. Moreover, the microbially transformed algal-derived OM could contribute to the oxidation rate of the chemical oxygen demand.

Effect of Water, Organic Matter, and Lime on Degradation of Herbicide in Soil (토양중(土壞中) 제초제분해(除草劑分解)에 미치는 수분(水分), 유기물(有機物), 석회(石灰)의 영향(影響))

  • Oh, Byung-Youl;Ryang, Hwan-Seung
    • Korean Journal of Weed Science
    • /
    • v.4 no.2
    • /
    • pp.154-162
    • /
    • 1984
  • The persistence of butachlor and nitrofen in different soil conditions applied organic matter, lime, and other pesticides was studied under submerged and field moisture capacity. Degradation of the herbicides in soil was significantly retarded by autoclaving the soil and half-life of nitrofen was much longer than that of butachlor under this condition. Submerging the soil enhanced degradation of the herbicides, in particular that of nitrofen. On the other hand, half-life of nitrofen under field moisture capacity was twice longer than that of butachlor. Increased amendment of rice straw to the soil shortened the half-life of nitrofen under submerged soil, however it prolonged that of butachlor when the amendment was exceeded 1000kg/10a level. Liming the soil stimulated herbicide decomposition in the soil, which appears to be pH independent. Butachlor degradation in submerged soil was slightly stimulated by simultaneous application of fungicides and insecticides, but nitrofen persistence was not influenced.

  • PDF

Studies on the Enzyme Activities and Heavy metals of Forest Soil in Mt. Nam. Seoul (남산 삼림 토양에서의 효소 활성도와 중금속 함량에 관한 연구)

  • 이인숙;박진성;김옥경;조경숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_3
    • /
    • pp.695-702
    • /
    • 1998
  • This study was carried out to investigate to determine seasonal variation of dehydrogenase activity, phosphatase activity, adenosine tri-phosphate content and some physicochemical properties, such as soil pH, moisture content, organic matter and several heavy metal concentrations from Apr. 1997 to jan. 1998 in Pinus densiflora and Quercus mongolica forest in Mt. Nam, to explain a relationship between enzyme activity and the soil factors. There were ranges of 4.03-4.65 in soil pH, 18.65-51.09% in moisture content and 6.69-95.95% in orgainc matter. The organic matter content decreased with soil horizon, showing the higher values in Q. mongolica forest. In comparison to the results of Kawngneung site as control area, there were slightly differences due to a development level of forest ecosystem and microbial degradation of organic matter. The heavy metal concentrations showed 32.50-75.55 ${\mu}g/g$ in Cu, 69.33-134.84 ${\mu}g/g$ in Zn, 57.02-150.32 ${\mu}g/g$ in Pb, and 0.36-1.00 ${\mu}g/g$ in Mt. Nam. These values are higher than in Kwangneung site because of long-term exposure to air pollutants from central city. On the other hand, ATP contents in Mt. Nam were lower than in Kawngneung site in relation to soil organic matter, moisture content and relatively high heavy metal concentrations. ATP contents per soil weight was largest in F+H layer and in spring time of other seasons. Dehydrogenase activity as an index of soil microbial activity had a ranges of 170.67-1,221.66 ${\mu}g$ TPF/g that showed lower values than in Kawngneung site. However, phophatase activity had a contray tendency due to P fertilization for a continuous management. Those values increased through spring to a maximum in the summer and fall in autumn. This is basically caused by metabolic state of soil on the biological activity and several and several factors, such as aeration, soil temperature, vegetation and microflora.

  • PDF

Effects of Bacillus and Endospore Germinations on Organic Matter Removal (Bacillus와 내생포자 발아가 유기물 제거에 미치는 효과)

  • Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.169-175
    • /
    • 2007
  • The Bio Best Bacillus(B3) and Rotating Activated Bacillus Contactor(RABC) processes, in which Bacillus strains are predominating, are reported to remove nitrogen and phosphorus as well as organic matter effectively. Nevertheless the nutrient removal characteristics of the Bacillus strains have not been studied in detail so far. This study investigated the organic and nutrient removal by Bacillus strains, Bacillus megaterium(KCTC 3007), Paenibacillus polymyxa(KCTC 3627), and Bacillus sp. A12, C21, F12, and L1(isolated from a B3 process), by incubating the strains in 0.2% nutrient broth at $30^{\circ}C$. Burkholderia cepacia(KCTC 2966), a common activated sludge organism, was used as a reference species for comparison. Although the degradation rate was affected by the population sire, the specific removal rates of organic matter by Bacillus strains were greater by $2\sim5$ times than that of Burkholderia. In particular, the culture bottles inoculated with the endospores of Bacillus megaterium and Bacillus sp. C21, F12, and N12 showed significantly higher degradation rate than those of vegetative cells.

Effects of Aspergillus oryzae Fermentation Extract on In Situ Degradation of Feedstuffs

  • Chiou, P.W.S.;Chen, C.;Yu, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1076-1083
    • /
    • 2000
  • The aim of this study was to evaluate the effect of Aspergillus oryzae fermentation extract (AFE) on in situ degradation of the various concentrates, forages and by-products in Taiwan. The in situ trial was conducted to determine the effect of AFE on the rate of ruminal degradation of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) of the various local available feedstuff commonly used for dairy cattle. Two ruminal fistulated cows were arranged into a two by two switchback trial. Two dietary treatments were control without AFE inclusion diet and diet with 3 g of AFE (Amaferm) added daily into the total mixed ration (TMR). Results showed that effect of AFE inclusion on the ruminal degradability of concentrates vary; soybean meal is the most responsive feedstuff, corn is the next, whereas full-fat soybean did not response the AFE inclusion at all. The inclusion of AFE significantly depressed most of the nutrient degradation of the concentrates of soybean meal in the first 12-hour in situ incubation. The effect declined in the next 12 hours. Rapeseed meal showed a different trend of response: addition of AFE improved its NDF degradation. The inclusions of AFE significantly improved ADF degradation of roughage after 24 or 48 hours of incubation. However, corn silage and peanut-vines showed a different trend. Effects of AFE inclusion on the by-products degradability were inconsistent. Most of nutrients in rice distillers grain and some in beancurd pomace did show increased degradation by the AFE inclusion.

Physicochemical Effect on Permeate Flux in a Hybrid Ozone-Ceramic Ultrafiltration Membrane Treating Natural Organic Matter (자연유기물을 처리하는 혼합 오존-세라믹 한외여과 시스템에서 물리화학적 특성이 투과플럭스에 미치는 영향)

  • Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Effects of operational conditions and solution chemistry on permeate flux in a hybrid ozone-ceramic ultra-filtration (UF) membrane system treating natural organic matter (NOM) were investigated. Results showed that the extent of permeate flux decline was higher at higher cross-flow velocity and ozone dosage, but it was higher at lower transmembrane pressure (TMP). The mechanism of fouling mitigation was found to be more dependent upon reaction between ozone and natural organic matter at/near catalytic membrane surface than scouring effect due to ozone gas bubbles. Addition of calcium into model NOM solution at high pH led to significant decline in permeate flux while the calcium effect on permeate flux decline was less pronounced at lower pH. After permeate flux decline during the early stage of filtration, the flux started recovering and approached fully to the initial value of it due to degradation of NOM by catalytic ozonation at ceramic membrane surface in the hybrid ozone-ceramic membrane system.

Environmental Characteristics of Nutrients and Fluorescent Organic Hatters in the Northeast Pacific Ocean(KODOS) (북동태평양(KODOS 해역)의 영양염 및 형광 유기물에 관한 환경특성 연구)

  • 손승규;박용철
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.595-604
    • /
    • 1997
  • To investigate characteristics of biogeochemical environment of the Korea Deep Ocean Study(KODOSI area in the northeast Pacific Ocean, we preferentially measured Inorganic nutrients and fluorescent organic matters. Typically. the permanent thermocline was well developed at the depth of 200~1000m In the study area. Nitrate. phosphate and silicate were low In the surface mixed layer and Increased with depth. N/P and N/Si showed 15 and 0.2 respectively In the deeper layer. Two fluorophores, biomacromolecule(protein-like) and geomacromolecule (humid-like) , were observed by three dimensional fluorescence excltatlon/ emission spectra matrix. Biomacromolecule(maximum fluorescence at $Ex_{280m}/Em_{330nm}$) ranged from 41.9 to 147.0 TU with its maximum In the surface mixed layer and minimum in deeper water, This is a same trend that has been reported for DOC in the equatorial Pacific. This suggests that biomacromolecule might be labile and converted to refractory humic substance after bacterial degradation In the deeper layer. On the contrary, geomacromolecule(maximum fluorescence at $Ex_{330m}/Em_{430m}$), ranged from 7.6 to 46.5 QSU, showed minimum in the surface nixed layer(euphotic zone) Implying photodegradation and then increased with depth at all stations. In the characteristics of vertical profiles, the relationship between biomacromolecule and geomacromolecule showed negative correlation. Such trend can be attributed to biochemical regeneration or formation of fluorescent materials accompanying oxidation and rennnerallzation of settling organic matter.

  • PDF