• Title/Summary/Keyword: organic liquid precursor

Search Result 27, Processing Time 0.029 seconds

Dielectric $Al_2O_3-SiO_2$ Films from Metal Alkoxides

  • Soh, Deawha;Natalya, Korobova E.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.957-962
    • /
    • 2003
  • The preparation of $Al_2$O$_3$-SiO$_2$ thin films from less than one micron to several tens of microns in thickness had been prepared from metal alkoxide sols. Two methods, dip-withdrawal and electrophoretic deposition, were employed for thin films and sheets formation. The requirements to be satisfied by the solution for preparing uniform and strong films and by the factors affecting thickness and other properties of the films were examined. for the preparation of thin, continuous $Al_2$O$_3$-SiO$_2$ films, therefore, metal-organic-derived precursor solutions contained Si and Al in a chemically polymerized form has been developed and produced in a clear liquid state. In the process of applying to substrates, this liquid left a transparent, continuous film that could be converted to crystalline $Al_2$O$_3$-SiO$_2$ upon heating to 100$0^{\circ}C$. And, a significant change of the film density took place in the crystallization process, thus leading to the strict requirements as to the film thickness, which could survive crystallization.

  • PDF

Recent developments in liquid-phase synthesis and applications of nanomagnesia

  • Hanie Abdollahzade;Asghar Zamani
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.103-115
    • /
    • 2023
  • Recent developments in the synthesis of nanomagnesia of controlled sizes and shapes that are suitable for various applications are reviewed. Two main methods, based on liquid-phase synthesis, i.e., chemical methods and bio-based methods, are used to synthesize nanomagnesia. Conventionally, nanomagnesia was synthesized by chemical methods such as coprecipitation, sol-gel, combustion method, and so on using different chemical agents and stabilizers which later on become responsible for several biological risks because of the toxicity of used chemicals. Bio-based protocols are growing as another environmental friend method for the synthesis of various nanostructures especially nanomagnesia using biomass, plant extracts, alga, and fungi as a source of precursor material. The ideal method should offer better control of textural properties of nanostructures and decrease the necessity for purification of the synthesized nanoproducts, which sequentially removes the use of large amounts of chemicals and organic solvents and manipulation of products that are unsafe to the environment. Finally, the broad applicability of nanomagnesia in diverse areas is presented. Employment of nanomagnesia reported in several laboratory and industrial fields are valued from the standpoint of the significance of these issues for technological requests, as described in the literature. Nanomagnesia has various applications such as antimicrobial performance, removing pollutants, batteries application, and catalysis.

Powder Characteristics of $n-TiO_2$ Powder Synthesized by Chemical Vapor Synthesis (화학기상합성에 의해 제조된 $n-TiO_2$ 분말의 분말특성)

  • 김혜경
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.238-245
    • /
    • 1999
  • The preparation of $n-TiO_2$ powder by the Chemical Vapor Synthesis process (CVS) was studied using the liquid metal organic precursor (TTIP). The residence time and the collection methods were considered as main processing variables through the experiments. The CVS equipment consisted of a micropump and a flashvaporizer, a tube furnace and a tubular collection device. The synthesis was performed at $1000^{\circ}C$ with various sets of collection zone. The residence time and the total system pressure were controlled in the range of 3~20 ms and 10 mbar, respectively. Nitrogen adsorption, X-ray diffraction and electron microscopy were used to determine particle size, specific surface area and crystallographic structure. The grain size of the as-prepared $n-TiO_2$ powder was in the range of 2~8 nm for all synthesis parameters and the powder exhibited only little agglomeration. The relationship between particle characteristics and the processing variables is reviewed based on simple growth model.

  • PDF

$A1_2O_3-SiO_2$ Dielectric Films from Metal Alkoxides

  • Soh, Deawha;Natalya, Korobova
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.687-690
    • /
    • 2004
  • The preparation of A1203-SiO2 thin films from less than one micron to several tens of microns in thickness had been Prepared from metal alkoxide sols. Two methods, dip-withdrawal and electrophoretic deposition, were employed for thin films and sheets formation. The requirements to be satisfied by the solution for preparing uniform and strong films and by the factors affecting thickness and other properties of the films were examined. For the preparation of thin, continuous A12O3-SiO2 films, therefore, metal-organic-derived precursor solutions contained Si and Al in a chemically polymerized form has been developed and produced in a clear liquid state.

  • PDF

Preparation of TiO2:Fe,V nanoparticles by flame spray pyrolysis and photocatalytic degradation of VOCs (화염분무열분해법을 이용한 TiO2:Fe,V 나노분말의 제조 및 VOCs 분해 특성)

  • Chang, Han Kwon;Jang, Hee Dong;Kim, Tae-Oh;Kim, Sun Kyung;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Fe- and V-doped titanium dioxide nanoparticles consisting of spherical primary nanoparticles were synthesized from a mixed liquid precursor by using the flame spray pyrolysis. The effects of dopant concentration on the powder properties such as morphology, crystal structure, and light adsorption were analyzed by TEM, XRD, and UV-Vis spectrophotometer, respectively. As the V/Ti molar ratio increased, pure anatase particles were synthesized. On the contrary, rutile phase particles were synthesized as the Fe/Ti ratio increased. Photocatalytic property of as-prepared $TiO_2:Fe,V$ nanoparticles was investigated by measuring the removal efficiency for volatile organic compounds (VOCs) under the irradiation of visible light. After 2 hrs under visible light, the removal efficiencies of benzene, p-xylene, ethylbenzene, and toluene were reached to 21.9%, 21.4%, 19.8% and 17.6% respectively.

  • PDF

Simultaneous Determination of Anthraquinone, Flavonoids, and Phenolic Antidiabetic Compounds from Cassia auriculata Seeds by Validated UHPLC Based MS/MS Method

  • Girme, Aboli;Saste, Ganesh;Chinchansure, Ashish;Joshi, Swati;Kunkulol, Rahul;Hingorani, Lal;Patwardhan, Bhushan
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.82-89
    • /
    • 2020
  • A systematic isolation and characterization study for Cassia auriculata (CA) seeds resulted in identifying antidiabetic compounds 1,3,8-trihydroxyanthraquinone and quercetin, quercetin-3-O-rutinoside, gallic acid, caffeic acid, ferulic acid, and ellagic acid. The ultra-high-performance liquid chromatography based triple quadrupole mass spectrometry methodology was developed and validated for simultaneous identification and confirmation of these compounds from CA seeds. Multiple reaction monitoring (MRM) based quantification method was developed with MRM optimizer software for MS1 and MS2 mass analysis. The method was optimized on precursor ions and product ions with the ion ratio of each compound. The calibration curves of seven bioactive analytes showed excellent linearity (r2 ≥ 0.99). The quantitation results found precise (RSD, < 10 %) with good recoveries (84.58 to 101.42%). The matrix effect and extraction recoveries were found within the range (91.66 to 102.11%) for the CA seeds. This is the first MS/MS-based methodology applied to quantifying seven antidiabetic compounds in CA seeds and its extract for quality control purposes.

Determination of Analytical Approach for Ambient PM2.5 Free Amino Acids using LC-MSMS (LC-MSMS를 이용한 대기 중 PM2.5 유리아미노산 분석 방법 연구)

  • Bae, Min-Suk;Park, Da-Jeong;Lee, Kwon-Ho;Cho, Seung-Sik;Lee, Kwang-Yul;Park, Kihong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.54-63
    • /
    • 2017
  • Atmospheric nitrogen containing organic compounds(e.g. amino acids) has attracted considerable attention from the viewpoint of the oceanic biogeochemical cycle of nitrogen as well as the long range transfer. However, only a few measurements of organic nitrogen compounds have been conducted due to analytical difficulties. In this study, total of nine amino acids such as Glutamic acid, Histidine, Arginine, Tyrosine, Cystine, Valine, Methionine, Phenylalanine, Lysine have been analytically determined by Liquid Chromatography - Mass Spectrometry Mass Spectrometry (LC-MSMS). As results, Fragmentor Voltage (FV), Precursor Ion, Collision Energy, Product Ion related to individual amino acid compounds are shown. Based on the operational conditions, Lysine, Glutamine Acid, Tyrosine were analyzed during the China Oriented Smog Period. High concentrations of Lysine, Glutamine Acid, and Tyrosine are discussed with organic carbon (OC), elemental carbon (EC), and water soluble ions. The results can provide to understand the sources with aging process related to amino acids influenced by the long-range transport from the Yellow Sea area.

Property of hfac(hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl-1-butene) as a Liquid Precursor for Chemical Vapor Deposition of Copper Films (액상 구리 전구체 hfac (hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl-1-butene)의 특성 평가)

  • Lee, Si-U;Gang, Sang-U;Han, Sang-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1148-1152
    • /
    • 1999
  • An organometallic precursor, hfac(hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl- 1-butene) was synthesized, evaluated and compared with other precursors for metal organic chemical vapor deposition of copper thin films. It was found that at $40^{\circ}C$, the vapor pressure was an order of magnitude higher (about 3 torr) than (hfac) Cu vinyltrimethylsilane (VTMS) and films could be deposited at the substrate temperature of 100-$280^{\circ}C$ with deposition rate substantially higher. The copper films contained no detectable impurities as measured by Auger electron spectroscopy and had a resistivity of about 2.0$\mu\Omega$-cm in the deposition temperature range of 150 to $250^{\circ}C$. From the thermal analysis, (hfac)Cu(I)(DMB) is believed to be quite stable and no appreciable amount of precipitation was observed at $65^{\circ}C$ heating for more than a month.

  • PDF

Synthesis of Periodic Mesoporous Organosilica by Microwave Heating

  • Yoon, Sang-Soon;Son, Won-Jin;Biswas, Kalidas;Ahn, Wha-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.609-614
    • /
    • 2008
  • A periodic mesoporous organosilica material was synthesized by microwave heating (PMO-M) using 1,2-bis(trimethoxysilyl)ethane as a precursor in a cationic surfactant solution, and textural properties were compared with those of the product produced by conventional convection heating (PMO-C). These synthesized materials were characterized using XRD, TEM/SEM, N2 adsorption isotherm, 29Si and 13C NMR, and TGA, which confirmed their good structural orders and clear arrangements of uniform 3D-channels. Synthesis time was reduced from 21 h in PMO-C to 2-4 h in PMO-M. PMO-M was made of spherical particles of 1.5-2.2 m m size, whereas PMO-C was made of decaoctahedron-shaped particles of ca. 8.0 m m size. Effect of synthesis temperature, time, and heating mode on the PMO particle morphology was examined. The particle size of PMO-M could be controlled by changing the heating rate by adjusting microwave power level. PMO-M demonstrated improved separation of selected organic compounds compared to PMO-C in a reversed phase HPLC experiment. Ti-grafted PMO-M also resulted in higher conversion in liquid phase cyclohexene epoxidation than by Ti-PMO-C.

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF