• Title/Summary/Keyword: organic light-emitting diode

Search Result 440, Processing Time 0.026 seconds

Exciplex emission in bilayer Light-emitting device

  • Liang, Yu-Jun;Zhang, Hong-Jie;Han, Sang-Do;Jung, Young-Ho;Taxak, Vinod Bala
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.762-765
    • /
    • 2002
  • The bilayer organic light-emitting diode using Al (DBM) $_3$ (DBM=Dibenzoylmethane) as an emitting material and poly (N-vinylcarbazole) (PVK) as hole-transport material, emitted bright blue-green light instead of blue light. The blue-green emission is attributed to exciplex formation at the solid interface between Al (DBM) $_3$ and the hole-transport material. The exciplex formation was evidenced by the measurement of the photoluminescence spectra and lifetimes of Al (DBM) $_3$, PVK and an equimolar amount of mixture of Al (DBM) $_3$ and PVK.

  • PDF

Study on Color Shifting Mechanism for Organic Light Emitting Diode with Red Dopant-doped Emitting Layer (적색 도펀트가 도핑된 발광층을 갖는 유기발광다이오드에서의 컬러 시프트 메커니즘 연구)

  • Lee, Ho-Nyeon;Oh, Tae-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4590-4599
    • /
    • 2011
  • The Color shift phenomenon is becoming a major degradation factor of the emitting color purity in the organic emitting diodes which is generating a plurality of colors. In this study, the basic structure of organic light emitting diode device is comprised of ITO/${\alpha}$-NPD/$Alq_3$:DCJTB[wt%]/$Alq_3$/Mg:Ag, we have carry out numerical simulation of the electric-optical characteristics in organic light emitting diode device to estimate the mechanism of color shift phenomenon. We have investigated the causes of the color shift through the change of DCJTB doping concentration ratio. As the result, we have confirmed that the changes of the recombination rate which generated by trapped electrons and holes is one of the major factors for the color shift phenomenon.

Characterization of the High Luminance Top Emission Organic Light-emitting Devices (TEOLEDs) Using Dual Cathode Layer (이중 음극층을 이용한 고휘도 전면발광(Top emission) 유기EL소자의 특성평가)

  • Kang, Yoon-Ho;Lee, Su-Hwan;Shin, Dong-Won;Kim, Sung-Jun;Kim, Dal-Ho;Lee, Gon-Sub;Park, Jea-Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.23-27
    • /
    • 2006
  • Recently, Top emission organic light-emitting diode (TEOLED) has been attracted by their potential application for the development of flat panel display (FPD). We have fabricated the high luminance top emission organic-emitting diode (TEOLED) using dual cathode layer and three top emitting structure. These devices were characterized by electroluminescence (EL) and current density-voltage (J-V) measurements. After compared it with Au anode structure, luminance of the device using dual anode was better than using without Al device. Consequently, Al layers are very good candidates for a promising electron-injecting buffer layer for top emission light-emitting diode (TEOLED).

  • PDF

A Study on Electric Characteristics of Multi-layer by Light Organic Emitting Diode (유기발광소자(Organic Light Emitting Diode)의 다층박막에 대한 전기적 특성 연구)

  • Lee Jung-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.2
    • /
    • pp.76-81
    • /
    • 2005
  • This research approached electrical characteristics of organic light emitting diodes getting into the spotlight by next generation display device. Basic mechanism of OLED's emitting is known as that electron by cathode of lower work function and hole by anode of higher work function are driven and recombine exciton-state being flowed in emitting material layer passing carrier transport layer In order to make many electron-hole pairs, we must manufacture device in multi-layer structure. There are Carrier Injection Layer(CIL), Carrier Transport Layer(CTL) and Emitting Material Layer(EML) in multi-layer structure. It is important that regulate thickness of layer for high luminescence efficiency and set mobility of hole and electron.

  • PDF

Trends Detection of Display Research Areas by Bibliometric Analysis (과학계량학 기법을 이용한 디스플레이 연구영역의 트렌드 탐지)

  • Ahn, Se-Jung;Shim, We;Lee, June-Young;Kwon, Oh-Jin;Noh, Kyung-Ran
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1343-1351
    • /
    • 2012
  • In this study, trends for five research areas of LED(Light Emitting Diode), OLED(Organic Light Emitting Diode), LCD(Liquid Crystal Display), PDP(Plasma Display Panel) and CRT(Cathode Ray Tube) are investigated using bibliometric analysis. The papers and patents citation data were extracted from Scopus and USPTO databases, respectively. We could figure out the research trends by the number of publications and citation information. We prospect the current interests and future trends by investigating the development process of the 5 research areas as function of time.

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

The fabrication of White Organic Light-Emitting Diodes using Two-Wavelength (Two-Wavelength에 의한 백색 유기 발광 소자 제작)

  • 김중연;최성진;조재영;강명구;신선호;주성후;오환술
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.25-28
    • /
    • 2002
  • We have been fabricated white organic light emitting diode with two-wavelength ard mixing blue emit in DPVBi (4, 4-bis(2, 2-diphenylvinyl)-1, 1 -biphenyl)layer and yellow emit in rubrene (5, 6, 11, 12-tetraphenylnaphthacene)as emitting layer which are controlled with thickness. This device emits white light emitting in CIE (0.29, 0.33), 1000cd/$m^2$ at DC 18V.

  • PDF

Threshold voltage influence reduction and Wide Aperture ratio in Active Matrix Orgnic Light Emitting Diode Display (AMOLED(active matrix organic light emitting diode) 의 문턱전압 보상과 화소구조에 대한 연구)

  • 김정민;곽계달;신흥재;최성욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.257-260
    • /
    • 2002
  • This paper describes the pixel of AMOLED(act ive matrix organic light emitting diode) driving circuit by poly-sl technology. The area per pixel is 278um$\times$278um in 120$\times$160(2.2 inch) Driving the OLEDS with active matrix leads to the lower voltage operation, the lower peak pixel currents and the display with much greater efficiency and brightness The role of the active matrix is to provide a constant current throughout the entire frame time and is eliminating the high currents encountered In the passive matrix approach, This design can support the high resolutions expected by the consumer because the current variation specification is norestricted. The pixel has been designed driving TFT threshold voltage cancellation circuit and wide aperture ratio circuit that communizes 4 pixel. The test simulation results and layout are 11% per threshold-current var Eat ion and 12.5% the aperture ratio of increase.

  • PDF

Ambipoalr light-emitting organic field-effect transistor using a wide-band-gap blue-emitting molecule

  • Sakanoue, Tomo;Yahiro, Masayuki;Adachi, Chihaya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.137-140
    • /
    • 2007
  • We prepared ambipolar organic field-effect transistors and observed blue emission when both hole and electron accumulation layers were in the channel. We found that the reduction of carrier traps and controlling devices' preparation and measurement conditions were crucial for ambipolar operation.

  • PDF

Solution Processable P-OLED (Polymer Organic Light Emitting Diode) Display Technology.

  • Lee, Jueng-Gil;Carter, Julian
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1050-1055
    • /
    • 2005
  • We report the development frontiers that are dictating the speed of adoption of polymer organic light emitting diode (P-OLED) technology in market applications. Our presentation includes both the developments taking place in materials and the rapid advances in the manufacturing processes used for solution processable P OLEDs. On the manufacturing side, the latest progress in ink jet printing process is discussed. On the materials side, we look at both fluorescent and phosphorescent material performance including the CDT development roadmap.

  • PDF