• Title/Summary/Keyword: organic light emitting display

Search Result 613, Processing Time 0.032 seconds

Electroluminescence characteristics of organic light-emitting diodes with TPD doped PVK as the hole transport layer

  • Shin, Y.C.;Song, J.H.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1404-1407
    • /
    • 2005
  • We have fabricated organic light-emitting diodes using poly(N-vinylcarbazole)(PVK) doped with N,N'- diphenyl-N,N'-bis(3-methylphenyl)-[l,l'-biphenyl]- 4,4/-diamine (TPD) as the hole transport layer. TPD molecules act as the trapping sites in PVK and reduce the hole mobility, which can enhance the electronhole balance in the emitting layer, resulting in the enhanced device performance. We have found the optimum ratio of TPD to PVK for the EL efficiency.

  • PDF

Highly efficient blue phosphorescent organic light-emitting device using new host materials

  • Seo, Yu-Seok;Kim, Tae-Yong;Moon, Dae-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.817-819
    • /
    • 2009
  • We have developed highly efficient blue phosphorescent organic light-emitting devices (PHOLEDs) with simplified architectures using new host materials. The Blue PHOLED with new host:FIrpic emitting layer exhibits a maximum luminance efficiency of 34 cd/A and a low operating voltage 5 V at a high luminance of 1212 cd/$m^2$.

  • PDF

Electroluminescence properties of white organic light-emitting devices fabricated utilizing a $CaAl_{12}O_{19}:Mn^{4+}$ phosphor layer acting as a color conversion layer

  • Ahn, S.D.;Choo, D.C.;Kim, T.W.;Lee, J.Y.;Park, J.H.;Kwon, M.S.;Chu, C.;Ha, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.697-699
    • /
    • 2009
  • Optical properties of white organic light-emitting devices (WOLEDs) fabricated utilizing a phosphor layer acting as a color conversion layer were investigated. The WOLEDs were achieved due to the enhancement in the color conversion efficiency of the phosphor layer, and the chromaticity coordinates of WOLEDs were (0.29, 0.33).

  • PDF

White Organic Light-Emitting Diodes with Color Stability

  • Seo, Ji-Hoon;Park, Jung-Sun;Koo, Ja-Ryong;Seo, Bo-Min;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.357-361
    • /
    • 2009
  • The authors have demonstrated white oraganic light-emitting diodes (WOLED) using 1,4-bis[2-(4'-diphenylaminobiphenyl-4-yl)vinyl]benzene as fluorescent blue emitter and iridium(III) bis(5-acetyl-2-phenylpyridinato-N,C2') acetylacetonate as phosphorescent red emitter. The optimized WOLED using red host material as bis(2-methyl-8-quinolinato) -4-phenylphenolate exhibited proper color stability in comparison with the control device using 4,4'-N,N'-dicarbazole-biphenyl as red host. The white device showed a maximum luminance of 21100 $cd/m^2$ at 14 V, luminous efficiency of 9.7 cd/A at 20 $mA/cm^2$, and Commission Internationale de I'Eclairage ($CIE_{x,y}$)coordinates of (0.32, 0.34) at 1000 $cd/m^2$. The devices also exhibited the color shift with ${\Delta}CIE_{x,y}$ coordinates of ${\pm}$ (0.01,0.01) from 100 to 20000 $cd/m^2$.

Life Estimation of Organic Light Emission Diode by Accelerated Test (유기발광 다이오드의 가속 수명 시험에 관한 연구)

  • Choi, Young-Tea;Cho, Jai-Rip
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.61-66
    • /
    • 2010
  • Organic light emitting diode(OLED) has been developed fast from 1963 when electric light emitting phenomenon was discovered. PMOLED(passive matrix OLED) is producted earlier than AMOLED(active matrix OLED). PMOLED is mainly mounted at sub display, but AMOLED is mounted at main display. Nowadays AMOLED is expanded to PMP(portable multimedia players), navigation and TV market. Even thought OLED's market is opening to many applications, OLED's life is worried until now. If we know about OLED's real life, we need time to test so much time over 20,000hrs. Realistically, there is difficult to test such as long time with products from the information-technology sector having a short life cycle. In this paper, we study about OLED's accelerated test to reduce life test by current. We can design OLED's accelerated life model by the result of test. The model consists of design variables like ratio of light emitting, organic material structure, condition of aging, etc. In conclusion, this model can be applied to study about organic material, machine and manufacturing process etc, and also it's possible to develop a method of manufacturing process & materials, so we need to study on the subject of this paper continuously.

Threshold voltage influence reduction and Wide Aperture ratio in Active Matrix Orgnic Light Emitting Diode Display (AMOLED(active matrix organic light emitting diode) 의 문턱전압 보상과 화소구조에 대한 연구)

  • 김정민;곽계달;신흥재;최성욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.257-260
    • /
    • 2002
  • This paper describes the pixel of AMOLED(act ive matrix organic light emitting diode) driving circuit by poly-sl technology. The area per pixel is 278um$\times$278um in 120$\times$160(2.2 inch) Driving the OLEDS with active matrix leads to the lower voltage operation, the lower peak pixel currents and the display with much greater efficiency and brightness The role of the active matrix is to provide a constant current throughout the entire frame time and is eliminating the high currents encountered In the passive matrix approach, This design can support the high resolutions expected by the consumer because the current variation specification is norestricted. The pixel has been designed driving TFT threshold voltage cancellation circuit and wide aperture ratio circuit that communizes 4 pixel. The test simulation results and layout are 11% per threshold-current var Eat ion and 12.5% the aperture ratio of increase.

  • PDF

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

The Study of Silicon Nitride Passivation Layer on OLED ($Si_3N_4$ 페시베이션 박막이 유기발광다이오드 소자에 주는 영향 연구)

  • Park, Il-Houng;Kim, Kwan-Do;Shin, Hoon-Kyu;Yoon, Jae-Kyoung;Yun, Won-Min;Kwon, Oh-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.332-333
    • /
    • 2009
  • In this paper, we have deposited silicon nitride films by plasma-enhanced chemical vapor deposition (PECVD). For films deposited under optimized conditions, the mechanism of plasma-enhanced vapor deposition of silicon nitride is studied by varying process parameters such as rf power, gas ratio, and chamber pressure. It was demonstrated that organic light-emitting diode(OLEDs) were fabricated with the inorganic passivation layer processing. We have been studied the inorganic film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation layer, we have carried out the fabrication of OLEDs and investigate with luminescence and MOCON.

  • PDF

Study of Deep Blue Organic Light-Emitting Diodes Using Doped BCzVBi with Various Blue Host Materials

  • Kim, Tae-Gu;Oh, Hwan-Sool;Kim, You-Hyun;Kim, Woo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.85-88
    • /
    • 2010
  • Deep blue organic light emitting diodes (OLEDs) were fabricated using 5 wt.% doped BCzVBi with various blue host materials such as NPB, DPVBi, MADN and TPBi. A blue OLED device, using DPVBi as host material, was constructed via NPB ($500\;{\AA}$) / DPVBi:BCzVBi ($200\;{\AA}$) / Bphen ($300\;{\AA}$) / LiF ($20\;{\AA}$) / Al ($1,000\;{\AA}$) and it shows a maximum luminescence of $4,838\;cd/m^2$, a current density of $32.7\;mA/cm^2$, a luminous efficiency of 3.3 cd/A and CIExy coordinates of (0.19, 0.15) at 4.5 V whereas the luminous efficiencies and CIExy coordinates of other blue OLEDs using NPB, MADN and TPBi as host materials have 1.1, 2.6 and 2.0 cd/A and (0.15, 0.11), (0.15, 0.10) and (0.15, 0.10), respectively. Energy transfer mechanisms between BCzVBi and its host materials were discussed with an energy band structure of host materials.