• Title/Summary/Keyword: organic fouling

Search Result 191, Processing Time 0.025 seconds

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Nitrogen Back-flushing Period and Time (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 질소 역세척 주기와 시간의 영향)

  • Hong, Sung Tack;Park, Jin Yong
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • The $N_2$ back-flushing period (FT) and time (BT) were investigated in hybrid process of ceramic microfiltration and PES (polyethersulfone) beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As decreasing FT and increasing BT, $R_f$ decreased and J increased, and finally the maximum $V_T$ could be acquired at FT 10 min and BT 30 sec. In FT effect experiment, treatment efficiencies of turbidity and dissolved organic matters (DOM) were the highest at no back-flushing (NBF) because of dramatic membrane fouling. As result of BT effect, the treatment efficiencies were the maximum at BT 30 sec, which was different with the FT result. Because the photocatalyst beads could be cleaned effectively as decreasing FT and increasing BT, turbidity treatment efficiency increased a little from 95.4% to 97.5% as decreasing FT, and from 95.9% to 98.5% as increasing BT. Also DOM treatment efficiency increased from 70.8% to 80.6% as decreasing FT, and from 75.1% to 85.8% as increasing BT. The optimal condition, where the treatment efficiencies and $V_T$ were the maximum, should be FT 10 min and BT 30 sec in our experimental range.

Ultrafiltration of Humic and Natural Water: Comparison of Contaminants Removal, Membrane Fouling, and Cleaning (휴믹산 용액 및 자연수의 한외여과: 제거율, 막오염 및 세척특성 비교)

  • Choo, Kwang-Ho;Nam, Mi-Yeon
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • NOM and fine particles are the main target materials in water treatment using membranes. Particularly, humic substances extracted from soils are frequently used in many fundamental studies representing natural organic matter in raw water for drinking water treatment. In this study, ultrafiltration (UF) of artificial humic water and natural river water was conducted and the characteristics of removal efficiency and permeability were compared. In the UF of river water, the transmembrane pressure increased in the same pattern with that of 5 mg/L humic water. For the removal of organic matter and fine particles, however, two types of feed water had shown different trends. Kaolin particles and humic acids added to artificial water were better removed, while colloids and organics in natural water were relatively poorly removed. From the $UV_{254}$ and GPC analyses, it seemed that the hydrophobicity and size of humic substances contributed to the greater removal of organic matter. The UF membrane applied for humic water also showed a higher flux recovery by caustic chemical cleaning than that for river water.

Effect of Fluidized Bed Powdered Activated Carbon Impregnated by Iron Oxide Nano-particles on Enhanced Operation and NOM Removal of MF Membrane System (산화철 나노입자 표면개질 분말활성탄 유동층에 의한 MF 막 분리 공정의 운전 및 NOM 제거 효율 향상)

  • Kim, Sung-Su;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.332-339
    • /
    • 2011
  • Effects of powdered activated carbon impregnated by iron oxide nano particle (Impregnated PAC) on the microfiltration (MF) membrane system performance in NOM removal from water were investigated in this study. A fluidized bed column was employed as a pretreatment of MF membrane process. The Impregnated PAC bed was stably maintained at an upflow rate of 63 m/d without leakage of the Impregnated PAC particles, which provided a contact time of 29 minutes. A magnetic ring at the upper part of the column could effectively hold the overflowing discrete particles. The Impregnated PAC column demonstrated a significant enhancement in the MF membrane performance in terms of fouling prevention and natural organic matter (NOM) removal. Trans-membrane pressure of the MF membrane increased to 41 kPa in 98 hours of operation, while it could be maintained at 12 kPa with the Impregnated PAC pretreatment. Removal of NOM determined by dissolved organic carbon and UV254 was also enhanced from 46% and 51% to 75% and 84%, respectively, by the pretreatment. It was found that the Impregnated PAC effectively removed a wide range of different molecular-sized organic compounds from size exclusion analysis.

A Study on the Fouling of Ultrafiltration Membranes Used in the Treatment of an Acidic Solution in a Circular Cross-flow Filtration Bench (순환식 막 모듈 여과장치를 이용한 산성용액의 수처리 공정 시 발생하는 한외여과막 오염에 관한 연구)

  • Kim, Nam-Joon;Choi, Chang-Min;Choi, Yong-Hun;Lee, Jun-Ho;Kim, Hwan-Jin;Park, Byung-Jae;Joo, Young-Kil;Kang, Jin-Seok;Paik, Youn-Kee
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.252-260
    • /
    • 2009
  • The effects of the treatment of an acidic solution at pH 2 on polyacrylonitrile ultrafiltration (UF) membranes were investigated using a circular cross-flow filtration bench with a membrane module. A substantial reduction in the membrane permeability was observed after 80 hours' treatment of the acidic solution. In addition, the analyses of the sample solutions by ultraviolet/visible absorption spectroscopy and gas chromatography/mass spectrometry (GC/MS), which were taken from the feed tank as a function of the treatment time, showed that a new organic compound was produced in the course of the treatment. From a thorough search of the mass spectral library we presumed the new compound to be 1,6-dioxacyclododecane-7,12-dione (DCD), one of the well-known additives for polyurethane. Based on further experimental results, including the scanning electron microscope (SEM) images and the solid-state NMR spectra of the membranes used for the treatment of the acidic solution, we suggested that the decrease of the permeate flux resulted not from the deformation of the membranes, but from the fouling by DCD eluted from the polyurethane tubes in the filtration bench during the treatment. Those results imply that the reactivity to an acidic solution of the parts comprising the filtration bench is as important as that of the membranes themselves for effective treatments of acidic solutions, for efficient chemical cleaning by strong acids, and also in determining the pH limit of the solutions that can be treated by the membranes.

Low Pressure Hybrid Membrane Processes for Drinking Water Treatment (저압 막여과 혼성공정을 이용한 고도 정수처리)

  • Choo, Kwang-Ho;Chung, Ji-Hyun;Park, Hak-Soon
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.161-173
    • /
    • 2007
  • Membrane filtration processes are increasingly popular for drinking water treatment that requires high quality of water. Low pressure membrane(LPM) processes such as microfiltration(MF) and ultrafiltration(UF), however, are ineffective in the removal of dissolved organic matter and also membrane fouling is still an important issue to be resolved. High pressure membranes(HPMs) may guarantee better water quality, but at the high energy consumption. Thus, various approaches to combine LPM processes with other physicochemical methods have been recently made to achieve their efficiency to the level comparable to that of HPM processes. In this work, therefore, hybrid processes that coupled MF/UF with coagulation, adsorption, chemical reactions(e.g., chelation and oxidation) are reviewed regarding system design and performance and also membrane surface modifications conducted by grafting and polyelectrolyte multilayer formation were assessed.

Study on Bottom Mud of Shellfish Farms in Jinhae Bay (진해만 패류양식장의 저질에 관한 연구)

  • CHO Chang-Hwan;YANG Han-Serb;PARK Kyung-Yang;YOUM Mal-Ku
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.35-41
    • /
    • 1982
  • Phaeophytin, COD, ignition loss and sulfide contents in the superficial bottom muds in Jinhae Bay, one of the most productive bays in the southern coastal waters of Korea, were measured in the summer season 1981 to investigate the eutrophication level and the origin of pollutants, Phaeophytin contents were $7.6-48.2{\mu}g/g$, COD 9.7-38.5 mg/g, ignition loss $8.1-14.2\%$ and sulfide 0.05-1.07 mg/g. Horizontal distributions in quantities of aforementioned four parameters were almost sane patterns; that is, the further from the mouth of the bay, the more quantities were found. The worst area was the western part of Gajo-do, where density of shellfish farms was the highest in the whole bay. COD and sulfide contents in the western part of Gajo-do were much more than maximum level of the eutrophicated zone, say 30 mg/g in COD and 0.2 mg/g in sulfide. Such great quantities of organic matters and sulfide in the innermost part of the bay would be mainly due to excrements from shellfishes and fouling organisms, but not owing to the influence of pollutants discharged from Masan, Jinhae harbour and its vicinity.

  • PDF

The Characterization of Floc Formation Under Various Pre-coagulation Conditions (응집-막분리 공정 적용시 전처리 응집조건에 따른 용존성 유기물 상(相)변화 특성)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1139-1145
    • /
    • 2008
  • The objectives of this research are to investigate the mechanism of coagulation affecting UF and find out the optimum conditions of the combined of coagulation with UF membrane filtration for NOM removal. During the mixing period, substantial changes in particle size distribution occurred under rapid and slow mixing condition due to the simultaneous formation of microflocs and NOM precipitates. Therefore, combined pretreatment using coagulation (both rapid mixing and slow mixing) improved dissolved removal efficiency. Also, for combined coagulation to membrane process, flux reduction rate showed lower than only UF process. The rate of flux decline for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Applying coagulation process before membrane filtration showed not only reducing membrane fouling, but also improving the removal of dissolved organic materials that might otherwise not be removed by the membrane.

Application of PAC-Membrane System for Treating Groundwater Contaminated with Chlorinated Organic Compounds (유기염소화합물로 오염된 지하수를 처리하기 위한 PAC-막분리 공정의 적용)

  • Lim, Joong-Kun;Kang, Min-Su;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.892-899
    • /
    • 2005
  • Groundwater is naturally of excellent microbiological qualify and generally of adequate quality for drinking water use. However, recently, the impact of urbanization and intensification of agricultural production have led to serious deterioration in groundwater quality. The representative SOCs used in this study were trichloroethylene (TCE) and tetrachloroethylene (PCE). Powdered activated carbon (PAC) is widely used for SOCs removal. The overall goal of this study was to demonstrate the feasibility of using a hybrid use of PAC-UF and PAC-MF processes for treating groundwater contaminated with TCE and PCE. The results show that the flux decline rate was lower for the PAC-UF or PAC-MF process than for UF or MF only process. Therefore, applying PAC before UF or MF membrane filtration showed not only enhancing the removal of TCE and PCE, but also reducing membrane fouling.

Feasibility study on shale gas wastewater treatment using membrane distillation (막 증발법을 이용한 셰일가스 폐수 처리 가능성 평가)

  • Cho, Hyeongrak;Choi, Yongjun;Lee, Sangho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.441-447
    • /
    • 2016
  • Development of shale gas has drawn increasing attention since it is one of promising alternative energy resources. However, contamination of groundwater and surface water during the extraction of shale gas is becoming a serious environmental issues, which brings the needs to treat wastewater generated from hydraulic fracking. In this study, the feasibility of membrane distillation (MD) for the treatment of shale gas wastewater was investigated using a laboratory scale experimental setup. Flat-sheet MD membranes were used to treat produced water from a shale gas well in the United States. Different configurations such as direct contact MD (DCMD) and air gap MD (AGMD) were compared in terms of flux and fouling propensity. The foulants on the surface of the membranes were examined. The results suggest that MD can treat the shale gas produced water containing more than 200,000 mg/L of total dissolved solids, which is impossible by other technologies such as reverse osmosis (RO) and forward osmosis (FO). In this study, we investigated the possibility of processing and characterization of shale gas produce wastewater using membrane distillation. Laboratory scale membrane distillation experimental device was developed. It was compared the flat-sheet direct contact membrane distillation and flat-sheet air gap membrane distillation. AGMD flux in lower than the flux of DCMD, it was expected that the contamination caused by organic matters.

A Study on the Flux and Heat Transfer of Direct Contact Type Module Applied for a Pilot Scale Membrane Distillation Process (파일럿 규모 막 증발 공정 적용을 위한 직접 접촉식 모듈의 투과유속 및 열에너지 이동에 관한 연구)

  • Kim, Seung Hwan;Kim, Se Woon;Lee, Dong Woo;Cho, Jin Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.229-236
    • /
    • 2017
  • In this study, a direct contact membrane module was manufactured to be used in a pilot scale membrane distillation process to treat $3m^3/day$ of the digestate produced from anaerobic digestion of livestock manure. In order to investigate the performance of the membrane module, permeate flux was measured with and without spacer inside the module under various condition of temperature difference and cross flow velocity (CFV) through the membrane surfaces. Flux recovery rate after chemical cleaning was also investigated by applying three different cleaning methods. Additionally, thermal energy consumption was theoretically simulated based on actual pilot plant operation conditions. As results, we observed flux of the module with spacer was almost similar to the theoretically predicted value because the installation of spacer reduced the channeling effect inside the module. Under the same operating condition, the permeate flux also increased with increasing temperature difference and CFV. As a result of chemical in-line cleaning using NaOCl and citric acid for the fouled membranes, the recovery rate was 83.7% compared to the initial flux when NaOCl was used alone, and 87% recovery rate was observed when only citric acid was used. However, in the case of using only citric acid, the permeate flux was decreased at a rapid rate. It seemed that a cleaning by NaOCl was more effective to recover the flux of membrane contaminated by the organic matter as compared to a cleaning by citric acid. The total heat energy consumption increased with increasing CFV and temperature difference across the membrane. Thus, further studies should be intensively conducted to obtain a high permeate flux while keeping the energy consumption to a minimum for a practical application of membrane distillation process to treat wastewater.