• Title/Summary/Keyword: organic fouling

Search Result 191, Processing Time 0.035 seconds

Membrane Filtration Technology for Drinking Water Treatment & Night Soil Treatment

  • Kato, Yasuhiko
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.155-170
    • /
    • 1998
  • 1. The flux for hydrophilic CA membrane is higher than that for hydrophobic PES membrane at any operating conditions. The difference in bpth fluxes becomes greater as the water recovery is lower. 2. Backwash pressure should be more than twice as high as filtration pressure in order to maintain the higher flux. Backwash frequency is independent of the flux when the UF is operated under the same water recovery. 3. The relatively lower crossflow velocity of around 0.1 m/s would be appropriate because of the lower energy consumption per treated water. 4. The membrane fouling occurring at high turbidity and high concentration of organic compounds in raw water can reduce the flux and increase the removal of the organic compounds. 5. It is confirmed by the pilot plant testing that the UF by using the CA membrane module was well applicable to the drinking water treatment.

  • PDF

A Study on Effect of Jet Mixed Separator Combination for Pre-treatment of Ultrafiltration Membrane Filtration Process (UF 막 여과 공정의 효과적인 전처리 공정으로 분류교반고액분리조(噴流攪拌固液分離槽) (Jet Mixed Separator: JMS) 도입 효과에 관한 연구)

  • Lee, Sanghyup;Jang, Nakyong;Watanabe, Yoshimasa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • In this research, we tried to combine the coagulation/sedimentation process as pre-treatment with UF membrane filtration to reduce the membrane fouling and to improve the permeate water quality. We used the Jet Mixed Separator (JMS) as coagulation/sedimentation process. We observed that the HPC and E.Coli can't be removed through the direct UF memebrane filtation of surface water. The removal efficiency of dissolved organic substances, indicated by E260 and DOC, was 40% and 15%, respectively. However, the removal efficiency of it increased two time as a result of combination of JMS process as coagulation/sedimentation pre-treatment. This was resulted from the formation of high molecular humic micro-floc through JMS process. The accumulation amount of irreversible cake layer which was not removed by backwashing was less than direct UF membrane filtration of surface water. Moreover, the loading rate of fouling induced substances, such as humic substances and suspended substances, on membrane surface decreased drastically through JMS process. As a result, the accumulation amount of irreversible cake on membrane surface was decreased.

Selectivity of cations in electrodialysis and its desalination efficiency on brackish water (전기투석 막여과의 이온제거 특성 및 지하염수의 담수화효율)

  • Choi, Su Young;Kweon, Ji Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.445-456
    • /
    • 2013
  • In this study, desalination by electrodialysis with ion exchange membranes was applied to synthetic waters with various ion concentrations and also for ground waters from coastal areas in Korea. Electrodialysis performance on the synthetic solutions showed the similar tendency in operation time and current curves, i.e., shorter operation time and higher maximum current with increasing applied voltages. The ED results of synthetic waters with different ion compositions, i.e., $Na_2SO_4$, $MgSO_4$, $CaSO_4$, at the similar conductivity condition, i.e., $1,250{\mu}s/cm$ revealed that effects of mono- and divalent ions on water quality and performance in electrodialysis were different. The divalent ions had less efficiency in the ED compared to monovalent sodium ions and also divalent calcium ions showed better performance than Mg ions. The electrodialysis on the ground waters produced high quality of drinking water. The groundwater from SungRoe however showed a buildup of membrane resistance. Organic matter concentrations and great portions of divalent ions in the groundwater were possible causes of the deteriorated performance.

Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration

  • Kertesz, Szabolcs
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.73-86
    • /
    • 2014
  • Membrane fouling is a major challenge limiting the use of membrane applications. In this study high induced shear rates were utilized at the membrane surface in order to reduce the organic and inorganic scaling by using the torsional vibration of flat sheet membranes. The performances of a vibratory shear-enhanced processing (VSEP) system for the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membrane filtration of industrial dairy wastewater were investigated. The vibration and non-vibration methods were compared with the same membrane and operational parameters during the purification of real dairy industrial process wastewater. In the initial experiments, short-term tests were carried out in which the effects of vibration amplitude, recirculation flow rate and transmembrane pressure were measured and compared. The permeate flux, turbidity, conductivity and chemical oxygen demand (COD) reduction of dairy wastewater were investigated by using UF, NF and RO membranes with vibration and non-vibration methods. In the subsequent experiments, concentration tests were also carried out. Finally, scanning electron microscopy (SEM) revealed that the vibration method gave a better performance, which can be attributed to the higher membrane shear rate, which reduces the concentration of solids at the membrane, and the transmission.

Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst (분리막 및 광촉매의 혼성 정수/하수 처리 공정)

  • Park, Jin Yong
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.143-156
    • /
    • 2018
  • In this review article, hybrid water/wastewater treatment processes of membrane and photocatalyst were summarized from papers published in various journals. It included (1) membrane photoreactor (MPR), (2) fouling control of a membrane coupled photocatalytic process, (3) photocatalytic membrane reactors for degradation of organic pollutants, (4) integration of photocatalysis with membrane processes for purification of water, (5) hybrid photocatalysis and ceramic membrane filtration process for humic acid degradation, (6) effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, (7) hybrid photocatalysis/submerged microfiltration membrane system for drinking water treatment, (8) purification of bilge water by hybrid ultrafiltration and photocatalytic processes, and (9) Hybrid water treatment process of membrane and photocatalyst-coated polypropylene bead.

Removal of organic acid salts from 1,3-propanediol fermentation broth by electrodialysis

  • Wang, Xiao-Lin;Gong, Yan;Yu, Li-Xin;Tang, Yu;Liu, De-Hua
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.19-24
    • /
    • 2004
  • ED method is employed to effectively remove the organic acid salts in actual PDO fermentation broth. The lower electrical potential is selected to avoid the serious membrane fouling so as to ensure a stable and durative desalination process. Under the selected operation conditions, about 90% of organic acids salts are removed from PDO fermentation broth successfully by ED process. To reduce the loss of PDO product due to the diffusion, the operation time should be considered carefully. And based on mass balance equation and irreversible thermodynamics approach, a mathematical model is developed to describe the desalination process of an aqueous solution containing neutral solute by ED method. While the influence of concentration polarization is reflected by decreasing the conductivity of membrane, the model is verified well to describe the ED processes under varied operation conditions. Through the model, ED process of actual PDO fermentation broth is simulated to get a suitable scope of initial concentration in concentrated compartment.

  • PDF

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien;Mubarak, N.M.;Yee, Min Juey;Yon, Lau Sie;Bing, Chua Han;Khalid, Mohammad;Abdullah, E.C.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.175-186
    • /
    • 2018
  • Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 3. Effect of Organic Matters at $N_2$ Back-flushing (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 3. 질소 역세척 시 유기물의 영향)

  • Park, Jin Yong;Han, Ji Soo
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.171-177
    • /
    • 2012
  • Effect of humic acid (HA), photo-oxidation and adsorption with periodic $N_2$ back-flushing was investigated in hybrid process of ceramic ultrafiltration and photocatalyst for drinking water treatment. It was compared and investigated with the previous result at water back-flushing in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As decreasing HA, $R_f$ decreased dramatically and J increased, and finally $V_T$ was the highest at HA 2 mg/L. As HA concentration increased from 2 to 10 mg/L, the membrane fouling resistance after 180 mins' operation ($R_{f,180}$) improved 0.8 times more than that of water back-flushing. Therefore, HA concentration should affect on the membrane fouling at $N_2$ back-flushing than water back-flushing. Turbidity treatment efficiencies were almost constant independent of HA concentration, but HA treatment efficiency was the maximum at HA 2 mg/L. This means that adsorption and photo-oxidation of photocatalyst beads could removed HA at HA 2 mg/L, but it was not enough at 4 mg/L. Beyond HA 6 mg/L, UF could effectively treat HA by thick cake layer on membrane surface and severe inner membrane fouling.

Characteristics of Nutrient Removal and Membrane Fouling in a Membrane Bioreactor using Food Waste as an Additional Carbon Source (음식폐기물 응축수를 보조탄소원으로 이용하는 막 결합 생물 응조에서의 질소, 인 제거와 막 오염 특성)

  • Ahn, Young-Tae;Youn, Jong-Ho;Chae, So-Ryong;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.519-524
    • /
    • 2005
  • Due to the low C/N ratio of domestic wastewater characteristic, addition of external carbon source for the effective N and P removal is necessary. High organic content of food waste can be used for the external carbon source in biological nutrient removal processes, The applicability of condensate of food waste (CFW), which is produced during the high-rate fermentation process, was examined in membrane bioreactor for the nutrient removal. Under the various operating conditions, nutrient removal efficiencies and membrane fouling characteristics were evaluated using synthetic wastewater. From nitrate utilization rate (NUR) test, denitrification rate was 0.19 g $NO_3-N/g$ VSS/day. With the addition of CFW increased, average removal efficiencies of T-N and T-P could be increased up to 64% and 41%, respectively. Also the optimal retention time was 3 hr/5 hr for anoxic/aerobic reactor. When applied to real sewage, membrane fouling resistance was increased up to 60%, which could be reduced from $10.4{\times}10^{12}m^{-1}$ to $5.9{\times}10^{12}m^{-1}$ with the control of influent suspended solid concentration. In summary, it was suggested that CFW could be used as an economical and effective carbon source for membrane assisted biological N and P removal.

Effect of Coagulated Flocs Broken by the Pressure Pump on Removal Rate and Membrane Fouling of Pressurized MF process (가압펌프에 의해 해체된 플럭이 가압식 막여과 공정의 제거효율 및 막오염에 미치는 영향)

  • Kim, Junhyun;Moon, Baeksu;Park, Jongsu;Cho, Yoonho;Kim, Jinho
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.460-468
    • /
    • 2013
  • This study reviewed optimum dosage rate of coagulant and ability to remove dissolved organic carbon without sedimentation in conventional water purification plant. It was confirmed that floc formated by pre-treatment process was broken by impeller of booster pump. Optimum dosage rate of coagulant was 4 mg/L (as PACl 17%) for floc formation through blend, coagulation and after passing through the pump when turbidity of raw water was less than 10 NTU. And average removal rate of dissolved organic carbon was 43% at that time. Maximum removal rate of dissolved organic carbon was 48%, even though coagulation rate was increased gradually until 8 mg/L (as PACl 17%). So removal rate of dissolved organic carbon is not much improved even if dosage rage of coagulant increase. TMP of PVDF (polyvinylidene flouride) pressurized MF process without pre-treatment operated at 0.54 bar and TMP of PVDF pressurized MF process with pre-treatment operated at 0.41 bar.