• Title/Summary/Keyword: organic fertilizer.

Search Result 1,516, Processing Time 0.027 seconds

Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System (SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석)

  • Yoo, Dongsun;Ahn, Jaehun;Yoon, Jongsuk;Heo, Sunggu;Park, Younshik;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

Effect of Tillage and No-tillage of Winter Green Manure Crops on Yield of Red Pepper in Plastic Film House (비가림하우스 동계 녹비작물의 경운과 무경운이 고추 생육과 수량에 미치는 영향)

  • Won, Jong-Gun;Jang, Kil-Su;Hwang, Ji-Eun;Kwon, Oh-Hun;Kwon, Tae-Young;Cho, Jeong-Rae
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.18-23
    • /
    • 2012
  • To determine the effect of winter green manure crops for tillage and no-tillage organic pepper cultivation in plastic film house, five different green manure crops were cultivated during winter season. In nutrition composition of green manure crops, total nitrogen contents were higher in Vicia hirsuta and Vicia angustifolia than any other crops. The average dry weights of green manure crops were 8.3 ton per ha in tillage and 7.0 ton per ha in no-tillage, among green manure crops that of Secale cereale was the highest. Fertilizer supply was depended on the biomass of the cultivated green manure crops and nutrition contents, total nitrogen supply of V. angustifolia was 226 kg and that of S. cereale was 251 kg per ha in tillage field. In no-tillage field, N-supply of V. angustifolia was 197 kg and that of S. cereale was 222 kg per ha. In yield components of red pepper, fruit numbers per plant were 55.5 in green manure crop tillage and 37.0 in no-tillage cultivation. Among green manure crops, the yield of dried red pepper was the highest for V. angustifolia in both green manure crop tillage and no-tillage cultivation.

Nitrogen Losses During Animal Manure Management : A review (가축분뇨관리 과정 중 손실되는 질소 : A review)

  • Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Khan, Modabber A.;Ahn, Heekwon
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.73-80
    • /
    • 2012
  • Nitrogen included in animal manure can be used as organic fertilizer if it is treated properly but it may cause serious air and water pollution without proper management. Significant amount of nitrogen losses happen in the form of ammonia when the manure staying in animal house and storage facilities and being composted and applied to the field. In order to maximize the manure nitrogen utilization, it is important to understand the mechanisms of nitrogen loss during the diverse manure handling and treatment procedures. The plant available nitrogen portion of total nitrogen in excreted manure was evaluated based on animal type, animal manure collection system, manure treatment process, and application method. About 27% of nitrogen included in excreted pig manure could be plant available if it is applied to the filed after composting process. The plant available nitrogen portion varies from 29% (surface application) to 54% (solid injection) based on application method of digestated piggery slurry. Plant can use 18% of manure nitrogen if the composted cattle and poultry manure applied to the field using surface application method. Manure treatment and application methods need to be carefully selected to control and utilize the manure nitrogen properly.

Carbon and Nitrogen Dynamics of Wood Stakes as Affected by Soil Amendment Treatments in a Post-Fire Restoration Area (산불 훼손 복원지 내 토양개량제 처리가 Wood stakes의 탄소 및 질소 동태에 미치는 영향)

  • Park, Seong-Wan;Baek, Gyeongwon;Byeon, Hee-Seop;Kim, Yong Suk;Kim, Choonsig
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.357-365
    • /
    • 2018
  • This study was carried out to evaluate the weight loss rates, carbon and nitrogen dynamics of wood stakes following soil amendment treatments (CLB: compound fertilizer + lime + biochar; LB: lime + biochar) in a post-fire restoration area, Ulsan Metropolitan city, southern Korea. Soil amendments in the fire-disturbed area were applied to two-times (Mar. and Jun. 2015, 2016) during the study period. Wood stakes on Mar. 2015 were buried at a top 15cm of mineral soil in two soil amendment and control treatments of Liriodendron tulipifera, Prunus yedoensis, Quercus acutissima, Pinus thunbergii plantations and an unplanted area in the post-fire restoration area. Wood stakes were collected at Oct. 2015, Mar. 2016 and Oct. 2016 to measure weight loss rates, organic carbon and nitrogen concentrations. Weight loss rates of wood stakes were not significantly affected by soil amendment treatments. However, remaining carbon of wood stakes were lowest in the control treatment (43.7%), followed by the CLB (71.3%) and the LB (71.6%) treatments. Remaining nitrogen of wood stakes was less in the control treatment (29.7%) compared with the LB treatment (52.6%). The results indicate that carbon and nitrogen mineralization of wood stakes in post-fire restoration area were delayed by soil amendment treatments.

Performance of Mixed Cropping of Barley and Hairy Vetch as Green Manure Crops for Following Corn Production

  • Shim, Kang Bo;Kim, Min Tae;Kim, Sung Gook;Jung, Kun Ho;Jeon, Weon Tai;Shin, Su Hyun;Lee, Jae Un;Lee, Jong Ki;Kwon, Young Up
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.160-165
    • /
    • 2018
  • BACKGROUND: Mixed cropping of legume and grass was effective system in view point of providing organic matter and nitrogen or reducing the nitrogen starvation of following crop. The relation of the change of N and P constituents depending on the cropping types and those effects on the growth and nutrient uptake of the following crop were observed. METHODS AND RESULTS: Three cropping types, hairy vetch mono cropping, barley mono cropping, and mixed cropping of hairy vetch and barley were applied. Soil properties, growth characteristics, and nitrogen production of green manure crops were observed. In additions, the effect of cropping types on the growth pattern of corn as the following crop was observed. In the mixed cropping system, creeping type hairy vetch climbed to the erect type barely for light utilization resulting in improvement of light interception rate and higher LAI (Leaf Area Index) than in mono cropping. Mixed cropping showed higher biomass production and soil nitrogen availability among the cropping types, indicating relatively much more nutrient supply and higher yield production of following crop. CONCLUSION: Mixed cropping showed relatively higher LAI (dry matter) mainly because of intense competition for light utilization usually after flowering stage. Mixed cropping also showed relatively higher yield of corn, the following crop rather than other types, mainly due to the more biomass production potential and higher N and P production ability. Therefore, mixed cropping was adaptable method to reduce or replace chemical fertilizer application for environmentally-friendly agriculture.

The Effects of Soybean Cultivation on Soil Microorganism Activity (콩 재배가 토양 미생물 군집 활성도에 미치는 영향)

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.76-82
    • /
    • 2019
  • BACKGROUND: For sustainable agriculture, there are various agricultural practices including low input. Over the last few decades high input of chemical fertilizer and compounds results in environmental pollution and deterioration of soil fertility. Soybean (Glycine max L.) is well known eco-friendly crop due to their symbionts. Soybean has a relationship with nitrogen fixation bacteria called rhizobia. In this research work, we investigated effects of soybean cultivation on soil microorganism activities. METHODS AND RESULTS: Experiments were conducted in pots and potato cultivation was used as reference. Soil chemical properties were analyzed considering soil nutrient over cropping period. For the soil microbial community analysis, dehydrogenase activity analysis (DHA) analyzed along with denaturing gradient gel electrophoresis. The results showed that higher soil organic matter in the soybean cultivation soil than in the potato cultivation soil. Available $P_2O_5$ concentration increased gradually in both pots but showed higher value in the potato cultivation soil. DHA value implying microbial activities showed higher value in the soybean cultivation soil over all cropping period. CONCLUSION: The cause of high microbial activity in the soybean cultivation soil was considered to the effects of some specific microorganisms related to soybean cultivation. Therefore, the availability of soybean cultivation for sustainable agriculture should be encouraged in terms of microorganism community activity in soil.

Effects of Phosphogypsum Application on Field Soil Properties and Yield and Quality of Garlic (Allium sativum L.) (부산석고 시용에 의한 밭 토양 특성과 마늘의 수량 및 품질에 미치는 영향)

  • Kim, Young-Nam;Cho, Ju Young;Yoon, Young-Eun;Choe, Hyoen Ji;Cheong, Mi Sun;Lee, Mina;Kim, Kwon-Rae;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • BACKGROUND: Globally, large amounts of phosphogypsum (PG), which is a by-product of the phosphate fertilizer production, is deposited in open areas. As PG contains calcium, phosphate, and sulphate, it can be used as a soil amendment in farmlands. This study was conducted to investigate the effects of PG application on properties of field soil and yield and quality of garlic (Allium sativum L.), and to seek appropriate level of PG application into the field. METHODS AND RESULTS: This experiment was conducted by applying PG at four different levels that were adjusted based on 65% calcium base saturation in the field soil: 0% (control), 50% (PG50, 100 kg/10a), 100% (PG100, 200 kg/10a), and 150% (PG150, 300 kg/10a). Following cultivation, soil electrical conductivity (EC), organic matter, available P and exchangeable Ca increased, whilst soil pH decreased. With increase in PG application level, soil EC and exchangeable Ca increased. PG application increased concentrations of water soluble Ca and SO4 across the soil profile, especially in PG150. The highest yield of garlic was found in PG100 treatment. The plant's uptake for N, P, Ca, and S increased by PG applications, but that for K decreased. Moreover, concentrations of S-related amino acids such as cysteine and methionine in garlic increased by PG applications. The increased content of nutrients and amino acids with PG supply might improve yield, quality, and favor of the crop. CONCLUSION: Overall, PG application at 200 kg/10a into a field had the best effect on improving soil fertility as well as yield and quality of garlic. Further studies are required to maximize efficiencies of PG supply in soil management and production of various crops.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

Effects of Pig Manure Composting Using Starch Pulp Treating on Growth and Yield Characteristics of Potato Cropping (전분박을 이용한 돈분발효퇴비의 시용이 감자의 생육과 수량에 미치는 영향)

  • 강봉균;현해남
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.1
    • /
    • pp.75-86
    • /
    • 2002
  • This study was conducted to investigate the effects of pig manure composting using starch pulp m growth and yield characteristics of potato cropping. Four treatments ; No compost, 1 : 1 : 0, 1 : 0.75 : 0.25 and 1 : 0.5 : 0.5 the mixing ratio of pig manure, saw dust, and dehydrated starch pulp and composting by Piling and blowing methods. Plant heights in first growth stage were higher for the treatment of saw dust compost and starch pulp compost than the treatment of chemical fertilizer, but after the stage, there were no significant difference among treatments. The number of stolons were met for 10.9 in 1 : 0.5 : 0.5 treatment, following 1 : 0.75 : 0.25 and 1 : 1 : 0. On the other hand, tuber diameter and top dry matter weight tended to be larger for manure treatment than no treatment but there was no significant difference. Total number of tubers were largest for 1 : 0.5 : 0.5, and those for 1 : 1 : 0 and 1 : 0.75 : 0.25 were similar. Tuber yields of not more than 80g tended to be different, but those of between 81g and 120g and more than 120g were apparently larger for the compost treatment than no treatment. The ratio of marketable tubers appeared large to be about 86% for 1 : 0.75 : 0.25 and 1 : 0.5 : 0.5 treatments. Ratio of infected common scab on potato tubers tended to be highest for 1 : 0.5 0.5 but there were no statistical significance. However, when compost was made by mixing starch pulp in future, the solutions to the occurrence of infected common scab must be considered, The contents of N. P, K and Ca in leaves were larger for the compost treatment than no treatment, but no significant difference was observed, Accordingly, the effects of treating starch pulp compost on growth and yield characteristics of potato cropping were more affirmative than those of saw dust compost.

  • PDF

Livestock Manure Nutrients Flow Analysis of Integrated Crop-Livestock Farming Model Reflecting the Regional Characteristics (지역특성을 고려한 경축순환농업 모형의 가축분뇨 양분 흐름분석)

  • Lee, Joon Hee;Choi, Hong Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.36-46
    • /
    • 2015
  • Integration of crop-livestock farming has been a problem-solving mode for abatement of environmental pollution and recovery of resources in recent years. The objectives of this study were 1) to suggest the customized integration of crop-livestock farming model reflecting the regional characteristics through in-depth analysis of case study and 2) to analyze the livestock nutrients flow in terms of three primary elements as nitrogen(N), phosphorous(P), and potassium(K). The personal interview and survey were carried out in 2012 for a total of 161 farms from four different regions(NS, NW, JJ, YC) in South Korea. The mass balance analysis was used to suggest and evaluate the models for two sites(JJ and YC). The results showed that NS and NW sites produced relatively more livestock manure than the sites of YC and JJ because of the regional differences in livestock numbers and urbanization. The models were suggested for the site JJ and site YC, and 'two track model(energy and resource recovery)' and 'dispersal type model' were assigned respectively. For the nutrient flows, the releasing P and K with new models had increased up to 7%, while N release had decreased down to 15% in both YC and JJ sites compared to the present treatment system. Estimated value showed that there was oversupply of N (719 ton/yr) and $P_2O_5$ (1,269 ton/yr) in YC and deficiency of N (671 ton/yr) and excessive $P_2O_5$ (32 ton/yr) in JJ respectively. Therefore, P runoff has to be considered an eutrophication occurs in rural small stream when an integration of crop-livestock farm system is applied into both sites.